Layer-polarized anomalous Hall effect in the MnBi2Te4/In2Se3 (In2Te3) heterostructures

Hong Xu, Xuqi Li, Haidan Sang, Yu Zhang, Wenying Mu, Shifei Qi
{"title":"Layer-polarized anomalous Hall effect in the MnBi2Te4/In2Se3 (In2Te3) heterostructures","authors":"Hong Xu,&nbsp;Xuqi Li,&nbsp;Haidan Sang,&nbsp;Yu Zhang,&nbsp;Wenying Mu,&nbsp;Shifei Qi","doi":"10.1016/j.mtquan.2024.100012","DOIUrl":null,"url":null,"abstract":"<div><p>The layer-polarized anomalous Hall effect has emerged as a novel phenomenon in the field of condensed matter physics, holding significant promise for future applications in designing low-dissipation devices. Currently, the layer-polarized anomalous Hall effect has been theoretically predicted or experimentally demonstrated through the application of external electric fields or the utilization of sliding ferroelectricity in diverse systems. Here, through first-principles calculations, we propose a pathway to realize the layer-polarized anomalous Hall effect by constructing A-type antiferromagnetic topological insulator MnBi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> based heterostructures with ferroelectric materials In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>/In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>. Our results firstly show that the sizeable band splitting (larger than 20 meV) appears in the antiferromagnetic 4 septuple layers MnBi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>/In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> system due to broken inversion symmetry. Further calculations approve that the layer-polarized anomalous Hall conductivity with reversal signs can be observed in the antiferromagnetic 4 septuple layers MnBi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>/In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> (In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>) systems by shifting the Fermi energy level. Additionally, it is also found that ferrimagnetic 4 septuple layers MnBi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>/In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Se<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> (In<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>) can be realized by controlling the direction of ferroelectric polarization of ferroelectric materials. Thus, the resulting layer-polarized anomalous Hall effect may be switchable in our suggested systems. This work provides feasible systems for the further experimental realization of the layer-polarized anomalous Hall effect.</p></div>","PeriodicalId":100894,"journal":{"name":"Materials Today Quantum","volume":"3 ","pages":"Article 100012"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S295025782400012X/pdfft?md5=56d493650688f0da73b3e5e4c7112299&pid=1-s2.0-S295025782400012X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Quantum","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S295025782400012X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The layer-polarized anomalous Hall effect has emerged as a novel phenomenon in the field of condensed matter physics, holding significant promise for future applications in designing low-dissipation devices. Currently, the layer-polarized anomalous Hall effect has been theoretically predicted or experimentally demonstrated through the application of external electric fields or the utilization of sliding ferroelectricity in diverse systems. Here, through first-principles calculations, we propose a pathway to realize the layer-polarized anomalous Hall effect by constructing A-type antiferromagnetic topological insulator MnBi2Te4 based heterostructures with ferroelectric materials In2Se3/In2Te3. Our results firstly show that the sizeable band splitting (larger than 20 meV) appears in the antiferromagnetic 4 septuple layers MnBi2Te4/In2Se3 system due to broken inversion symmetry. Further calculations approve that the layer-polarized anomalous Hall conductivity with reversal signs can be observed in the antiferromagnetic 4 septuple layers MnBi2Te4/In2Se3 (In2Te3) systems by shifting the Fermi energy level. Additionally, it is also found that ferrimagnetic 4 septuple layers MnBi2Te4/In2Se3 (In2Te3) can be realized by controlling the direction of ferroelectric polarization of ferroelectric materials. Thus, the resulting layer-polarized anomalous Hall effect may be switchable in our suggested systems. This work provides feasible systems for the further experimental realization of the layer-polarized anomalous Hall effect.

MnBi2Te4/In2Se3 (In2Te3) 异质结构中的层极化反常霍尔效应
层极化反常霍尔效应是凝聚态物理领域出现的一种新现象,在未来设计低耗散器件的应用中大有可为。目前,层极化反常霍尔效应已通过外加电场或利用不同系统中的滑动铁电现象得到理论预测或实验证明。在此,我们通过第一性原理计算,提出了一种通过构建基于 A 型反铁磁拓扑绝缘体 MnBi2Te4 与铁电材料 In2Se3/In2Te3 的异质结构来实现层极化反常霍尔效应的途径。我们的研究结果首先表明,由于反转对称性被打破,反铁磁性 4 七层 MnBi2Te4/In2Se3 体系中出现了相当大的带分裂(大于 20 meV)。进一步的计算表明,通过移动费米能级,可以在反铁磁性 4 七层 MnBi2Te4/In2Se3 (In2Te3) 系统中观察到具有反转符号的层极化反常霍尔电导率。此外,研究还发现,通过控制铁电材料的铁电极化方向,可以实现铁磁性 4 七层 MnBi2Te4/In2Se3 (In2Te3)。因此,在我们建议的系统中,所产生的层极化反常霍尔效应可能是可切换的。这项工作为进一步实验实现层极化反常霍尔效应提供了可行的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信