Monitoring changes in the zeta potential and the surface charge of human glioblastoma cells and phosphatidylcholine liposomes induced by curcumin as a function of pH
{"title":"Monitoring changes in the zeta potential and the surface charge of human glioblastoma cells and phosphatidylcholine liposomes induced by curcumin as a function of pH","authors":"Joanna Kotyńska, Monika Naumowicz","doi":"10.1016/j.cbi.2024.111215","DOIUrl":null,"url":null,"abstract":"<div><p>Curcumin (CUR) has received worldwide attention for its beneficial effects on human health. Research report possible cytotoxic activity against various cancers, including glioblastoma. So far, little attention has been given to the binding properties of CUR to lipid membranes, which influences their electrical characteristics and can provide insight into their membrane-permeation abilities. Biophysical interactions between the polyphenol and <em>in vitro</em> models (liposomes and LN-18 human glioblastoma cells) were investigated by monitoring zeta potential and the membrane's surface charge as a function of pH. We focused on practical measurements and undertook a theoretical analysis of interactions in the natural cell membrane. We used the MTT assay to evaluate the viability of CUR-treated cells. Measurements performed using the Electrophoretic Light Scattering method demonstrated the dose-dependent effect of CUR on both membrane surface charge and zeta potential analyzed <em>in vitro</em> models. We determined theoretical parameters characterizing the cell membrane based on a quantitative description of the adsorption equilibria formed due to the binding of solution ions to the membrane of glioblastoma cells. The interaction of CUR with liposomes and human cancer cells is pH-dependent.</p></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"402 ","pages":"Article 111215"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279724003612","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Curcumin (CUR) has received worldwide attention for its beneficial effects on human health. Research report possible cytotoxic activity against various cancers, including glioblastoma. So far, little attention has been given to the binding properties of CUR to lipid membranes, which influences their electrical characteristics and can provide insight into their membrane-permeation abilities. Biophysical interactions between the polyphenol and in vitro models (liposomes and LN-18 human glioblastoma cells) were investigated by monitoring zeta potential and the membrane's surface charge as a function of pH. We focused on practical measurements and undertook a theoretical analysis of interactions in the natural cell membrane. We used the MTT assay to evaluate the viability of CUR-treated cells. Measurements performed using the Electrophoretic Light Scattering method demonstrated the dose-dependent effect of CUR on both membrane surface charge and zeta potential analyzed in vitro models. We determined theoretical parameters characterizing the cell membrane based on a quantitative description of the adsorption equilibria formed due to the binding of solution ions to the membrane of glioblastoma cells. The interaction of CUR with liposomes and human cancer cells is pH-dependent.
期刊介绍:
Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.