Anna Basile, Valentina Giudice, Laura Mettivier, Antonia Falco, Anna Lisa Cammarota, Angela D'Ardia, Carmine Selleri, Margot De Marco, Nicola De Maio, Maria Caterina Turco, Liberato Marzullo, Alessandra Rosati
{"title":"Tuning the B-CLL microenvironment: evidence for BAG3 protein- mediated regulation of stromal fibroblasts activity.","authors":"Anna Basile, Valentina Giudice, Laura Mettivier, Antonia Falco, Anna Lisa Cammarota, Angela D'Ardia, Carmine Selleri, Margot De Marco, Nicola De Maio, Maria Caterina Turco, Liberato Marzullo, Alessandra Rosati","doi":"10.1038/s41420-024-02153-6","DOIUrl":null,"url":null,"abstract":"<p><p>The Bcl2-associated athanogene-3 (BAG3) protein, a critical regulator of cellular survival, has been identified as a potential therapeutic target in various malignancies. This study investigates the role of BAG3 within stromal fibroblasts and its interaction with B-cell chronic lymphocytic leukemia (B-CLL) cells. Previous research demonstrated that BAG3 maintains the active state of pancreatic stellate cells (PSCs) and aids pancreatic ductal adenocarcinoma (PDAC) spread via cytokine release. To explore BAG3's role in bone marrow-derived stromal fibroblasts, BAG3 was silenced in HS-5 cells using siRNA. In co-culture experiments with PBMCs from B-CLL patients, BAG3 silencing in HS-5 cells increased apoptosis and decreased phosphorylation of BTK, AKT, and ERK in B-CLL cells, thus disrupting their pro-survival key signaling pathways. The observation of fibroblast-activated protein (FAP) positive cells in infiltrated bone marrow specimens co-expressing BAG3 further support the involvement of the protein in fibroblast-mediated tumor survival. Additionally, BAG3 appears to support B-CLL survival by modulating cytokine networks, including IL-10 and CXCL12, which are essential for leukemic cell survival and proliferation. A robust correlation between BAG3 expression and the levels of CXCL12 and IL-10 was observed in both co-cultures and patient specimens. These findings point out the need for a more in-depth comprehension of the intricate network of interactions within the tumor microenvironment and provide valuable insights for the selection of new potential therapeutic targets in the medical treatment of CLL.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"10 1","pages":"383"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358476/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-024-02153-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Bcl2-associated athanogene-3 (BAG3) protein, a critical regulator of cellular survival, has been identified as a potential therapeutic target in various malignancies. This study investigates the role of BAG3 within stromal fibroblasts and its interaction with B-cell chronic lymphocytic leukemia (B-CLL) cells. Previous research demonstrated that BAG3 maintains the active state of pancreatic stellate cells (PSCs) and aids pancreatic ductal adenocarcinoma (PDAC) spread via cytokine release. To explore BAG3's role in bone marrow-derived stromal fibroblasts, BAG3 was silenced in HS-5 cells using siRNA. In co-culture experiments with PBMCs from B-CLL patients, BAG3 silencing in HS-5 cells increased apoptosis and decreased phosphorylation of BTK, AKT, and ERK in B-CLL cells, thus disrupting their pro-survival key signaling pathways. The observation of fibroblast-activated protein (FAP) positive cells in infiltrated bone marrow specimens co-expressing BAG3 further support the involvement of the protein in fibroblast-mediated tumor survival. Additionally, BAG3 appears to support B-CLL survival by modulating cytokine networks, including IL-10 and CXCL12, which are essential for leukemic cell survival and proliferation. A robust correlation between BAG3 expression and the levels of CXCL12 and IL-10 was observed in both co-cultures and patient specimens. These findings point out the need for a more in-depth comprehension of the intricate network of interactions within the tumor microenvironment and provide valuable insights for the selection of new potential therapeutic targets in the medical treatment of CLL.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.