Dong-Hyun Jung;Hongjae Nam;Junil Choi;David J. Love
{"title":"Modeling and Analysis of GEO Satellite Networks","authors":"Dong-Hyun Jung;Hongjae Nam;Junil Choi;David J. Love","doi":"10.1109/TWC.2024.3447229","DOIUrl":null,"url":null,"abstract":"The extensive coverage offered by satellites makes them effective in enhancing service continuity for users on dynamic airborne and maritime platforms, such as airplanes and ships. In particular, geosynchronous Earth orbit (GEO) satellites ensure stable connectivity for terrestrial users due to their stationary characteristics when observed from Earth. This paper introduces a novel approach to model and analyze GEO satellite networks using stochastic geometry. We model the distribution of GEO satellites in the geostationary orbit according to a binomial point process (BPP) and examine satellite visibility depending on the terminal’s latitude. Then, we identify potential distribution cases for GEO satellites and derive case probabilities based on the properties of the BPP. We also obtain the distance distributions between the terminal and GEO satellites and derive the coverage probability of the network. We further approximate the derived expressions using the Poisson limit theorem. Monte Carlo simulations are performed to validate the analytical findings, demonstrating a strong alignment between the analyses and simulations. The simplified analytical results can be used to estimate the coverage performance of GEO satellite networks by effectively modeling the positions of GEO satellites.","PeriodicalId":13431,"journal":{"name":"IEEE Transactions on Wireless Communications","volume":"23 11","pages":"16757-16770"},"PeriodicalIF":8.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Wireless Communications","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10654710/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The extensive coverage offered by satellites makes them effective in enhancing service continuity for users on dynamic airborne and maritime platforms, such as airplanes and ships. In particular, geosynchronous Earth orbit (GEO) satellites ensure stable connectivity for terrestrial users due to their stationary characteristics when observed from Earth. This paper introduces a novel approach to model and analyze GEO satellite networks using stochastic geometry. We model the distribution of GEO satellites in the geostationary orbit according to a binomial point process (BPP) and examine satellite visibility depending on the terminal’s latitude. Then, we identify potential distribution cases for GEO satellites and derive case probabilities based on the properties of the BPP. We also obtain the distance distributions between the terminal and GEO satellites and derive the coverage probability of the network. We further approximate the derived expressions using the Poisson limit theorem. Monte Carlo simulations are performed to validate the analytical findings, demonstrating a strong alignment between the analyses and simulations. The simplified analytical results can be used to estimate the coverage performance of GEO satellite networks by effectively modeling the positions of GEO satellites.
期刊介绍:
The IEEE Transactions on Wireless Communications is a prestigious publication that showcases cutting-edge advancements in wireless communications. It welcomes both theoretical and practical contributions in various areas. The scope of the Transactions encompasses a wide range of topics, including modulation and coding, detection and estimation, propagation and channel characterization, and diversity techniques. The journal also emphasizes the physical and link layer communication aspects of network architectures and protocols.
The journal is open to papers on specific topics or non-traditional topics related to specific application areas. This includes simulation tools and methodologies, orthogonal frequency division multiplexing, MIMO systems, and wireless over optical technologies.
Overall, the IEEE Transactions on Wireless Communications serves as a platform for high-quality manuscripts that push the boundaries of wireless communications and contribute to advancements in the field.