Analysis of quantum Krylov algorithms with errors

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2024-08-29 DOI:10.22331/q-2024-08-29-1457
William Kirby
{"title":"Analysis of quantum Krylov algorithms with errors","authors":"William Kirby","doi":"10.22331/q-2024-08-29-1457","DOIUrl":null,"url":null,"abstract":"This work provides a nonasymptotic error analysis of quantum Krylov algorithms based on real-time evolutions, subject to generic errors in the outputs of the quantum circuits. We prove upper and lower bounds on the resulting ground state energy estimates, and the error associated to the upper bound is linear in the input error rates. This resolves a misalignment between known numerics, which exhibit approximately linear error scaling, and prior theoretical analysis, which only provably obtained scaling with the error rate to the power $\\frac{2}{3}$. Our main technique is to express generic errors in terms of an effective target Hamiltonian studied in an effective Krylov space. These results provide a theoretical framework for understanding the main features of quantum Krylov errors.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"11 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-08-29-1457","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work provides a nonasymptotic error analysis of quantum Krylov algorithms based on real-time evolutions, subject to generic errors in the outputs of the quantum circuits. We prove upper and lower bounds on the resulting ground state energy estimates, and the error associated to the upper bound is linear in the input error rates. This resolves a misalignment between known numerics, which exhibit approximately linear error scaling, and prior theoretical analysis, which only provably obtained scaling with the error rate to the power $\frac{2}{3}$. Our main technique is to express generic errors in terms of an effective target Hamiltonian studied in an effective Krylov space. These results provide a theoretical framework for understanding the main features of quantum Krylov errors.
有误差的量子克雷洛夫算法分析
这项研究提供了基于实时演化的量子克雷洛夫算法的非渐近误差分析,该算法受到量子电路输出中一般误差的影响。我们证明了所得到的基态能量估计值的上界和下界,与上界相关的误差与输入误差率成线性关系。这就解决了已知数值与先前理论分析之间的偏差,前者表现出近似线性的误差缩放,而后者只能证明误差率与幂 $\frac{2}{3}$ 的缩放关系。我们的主要技术是用在有效克雷洛夫空间中研究的有效目标哈密顿来表达一般误差。这些结果为理解量子克雷洛夫误差的主要特征提供了一个理论框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信