A generalization of the Topological Tail Dependence theory: From indices to individual stocks

Hugo Gobato Souto , Amir Moradi
{"title":"A generalization of the Topological Tail Dependence theory: From indices to individual stocks","authors":"Hugo Gobato Souto ,&nbsp;Amir Moradi","doi":"10.1016/j.dajour.2024.100512","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the Topological Tail Dependence (TTD) theory’s applicability to individual stock volatility and high dimensions. Utilizing a comprehensive dataset from the S&amp;P 100, the research employs various methodologies to test the predictions and implications of the TTD theory. The theory’s main prediction of Wasserstein Distance’s predictive utility, particularly in nonlinear models during volatile periods, is confirmed. The research suggests extending the TTD theory’s application to various financial instruments and incorporating dynamic topological features to enhance understanding market dynamics. This study validates the TTD theory for individual stocks and highlights the necessity of topological considerations in financial modeling, promising advancements in financial econometrics and risk management strategies.</p></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"12 ","pages":"Article 100512"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772662224001164/pdfft?md5=0fc50290078f6ce05fd458cd41f6e0ad&pid=1-s2.0-S2772662224001164-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662224001164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the Topological Tail Dependence (TTD) theory’s applicability to individual stock volatility and high dimensions. Utilizing a comprehensive dataset from the S&P 100, the research employs various methodologies to test the predictions and implications of the TTD theory. The theory’s main prediction of Wasserstein Distance’s predictive utility, particularly in nonlinear models during volatile periods, is confirmed. The research suggests extending the TTD theory’s application to various financial instruments and incorporating dynamic topological features to enhance understanding market dynamics. This study validates the TTD theory for individual stocks and highlights the necessity of topological considerations in financial modeling, promising advancements in financial econometrics and risk management strategies.

拓扑尾部依赖理论的一般化:从指数到个股
本研究探讨了拓扑尾部依赖性(TTD)理论对个股波动性和高维度的适用性。研究利用 S&P 100 指数的综合数据集,采用各种方法来检验 TTD 理论的预测和影响。该理论关于 Wasserstein Distance 预测效用的主要预测得到了证实,尤其是在波动期的非线性模型中。研究建议将 TTD 理论的应用扩展到各种金融工具,并纳入动态拓扑特征,以增强对市场动态的理解。这项研究验证了个股的 TTD 理论,并强调了拓扑因素在金融建模中的必要性,有望推动金融计量经济学和风险管理策略的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信