{"title":"Pseudo-unknown uncertainty learning for open set object detection","authors":"Jiawen Han, Ying Chen","doi":"10.1016/j.knosys.2024.112414","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the significant strides made by modern object detectors in the closed-set scenarios, open-set object detection (OSOD) remains a formidable challenge. This is particularly evident in misclassifying objects from unknown categories into pre-existing known classes or ignored background classes. A novel approach called PUDet (Pseudo-unknown Uncertainty Detector) based on Evidential Deep Learning (EDL) is proposed, incorporating two modules: the Class-wise Contrastive Learning Network (CCL) and the Uncertainty-Aware Labeling Network (UAL). For CCL, the module leverages class-wise contrastive learning to encourage intra-class compactness and inter-class separation, thereby reducing the overlap between known and unknown classes. Simultaneously, it establishes compact boundaries for known classes and generates pseudo-unknown candidates to facilitate UAL for better learning pseudo-unknown uncertainty. For UAL, the Weight-Impact EDL (WI-EDL) approach is introduced to enhance uncertainty in edge samples by collecting categorical evidence and weight impact. Subsequently, UAL refines uncertainty via localization quality calibration, facilitating the mining of pseudo-unknown samples from foreground and background proposals to construct compact boundaries between known and unknown categories. In comparison to the state of the arts, the proposed PUDet showcases a substantial improvement, achieving a reduction in Absolute Open-Set Errors by 13%–16% across six OSOD benchmarks.</p></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"303 ","pages":"Article 112414"},"PeriodicalIF":7.2000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124010487","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the significant strides made by modern object detectors in the closed-set scenarios, open-set object detection (OSOD) remains a formidable challenge. This is particularly evident in misclassifying objects from unknown categories into pre-existing known classes or ignored background classes. A novel approach called PUDet (Pseudo-unknown Uncertainty Detector) based on Evidential Deep Learning (EDL) is proposed, incorporating two modules: the Class-wise Contrastive Learning Network (CCL) and the Uncertainty-Aware Labeling Network (UAL). For CCL, the module leverages class-wise contrastive learning to encourage intra-class compactness and inter-class separation, thereby reducing the overlap between known and unknown classes. Simultaneously, it establishes compact boundaries for known classes and generates pseudo-unknown candidates to facilitate UAL for better learning pseudo-unknown uncertainty. For UAL, the Weight-Impact EDL (WI-EDL) approach is introduced to enhance uncertainty in edge samples by collecting categorical evidence and weight impact. Subsequently, UAL refines uncertainty via localization quality calibration, facilitating the mining of pseudo-unknown samples from foreground and background proposals to construct compact boundaries between known and unknown categories. In comparison to the state of the arts, the proposed PUDet showcases a substantial improvement, achieving a reduction in Absolute Open-Set Errors by 13%–16% across six OSOD benchmarks.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.