Ke-Yi Li , Xiao-Wu Tang , Min-Liang Fei , Shi-jin Feng , Jia-jie Tang , Qing-Qing Xiang , Heng-yu Wang
{"title":"Tensile behavior of needle-punched nonwoven geotextiles based on in-situ X-ray computed tomography and numerical simulation","authors":"Ke-Yi Li , Xiao-Wu Tang , Min-Liang Fei , Shi-jin Feng , Jia-jie Tang , Qing-Qing Xiang , Heng-yu Wang","doi":"10.1016/j.geotexmem.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>There are situations where geotextiles are subjected to uniaxial tensile strain, which may result in noticeable variations in their filtration performance. This study accordingly investigated the behaviors of needle-punched nonwoven geotextiles during tensile testing using in-situ X-ray computed tomography. Furthermore, a numerical analysis of the variation in pore size characteristics was performed by establishing a geotextile model based on the web formation and bonding manufacturing process. The pore size and fiber orientation distributions were subsequently investigated and a model for the changes in the pore characteristics was established and validated. With increasing tension strain in the machine direction, the pore throat size distribution curve exhibited an overall shift towards larger sizes, and the characteristic pore sizes ranging from 10% to 98% either initially decreased, then increased or consistently increased. Furthermore, the fiber distribution was predominantly within the geotextile plane along the machine direction, and as the strain increased, the fibers stretched and aligned along the direction of the tensile load along the machine direction. Finally, the experimental findings of this study and relevant test results from the literature were thoroughly interpreted. The numerical model align well with the actual changes in pore size characteristics observed under tensile strain.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 6","pages":"Pages 1251-1263"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026611442400092X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
There are situations where geotextiles are subjected to uniaxial tensile strain, which may result in noticeable variations in their filtration performance. This study accordingly investigated the behaviors of needle-punched nonwoven geotextiles during tensile testing using in-situ X-ray computed tomography. Furthermore, a numerical analysis of the variation in pore size characteristics was performed by establishing a geotextile model based on the web formation and bonding manufacturing process. The pore size and fiber orientation distributions were subsequently investigated and a model for the changes in the pore characteristics was established and validated. With increasing tension strain in the machine direction, the pore throat size distribution curve exhibited an overall shift towards larger sizes, and the characteristic pore sizes ranging from 10% to 98% either initially decreased, then increased or consistently increased. Furthermore, the fiber distribution was predominantly within the geotextile plane along the machine direction, and as the strain increased, the fibers stretched and aligned along the direction of the tensile load along the machine direction. Finally, the experimental findings of this study and relevant test results from the literature were thoroughly interpreted. The numerical model align well with the actual changes in pore size characteristics observed under tensile strain.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.