Organotin(IV) complexes derived from 2,6-diacetylpyridine bis(2-hydroxybenzoylhydrazone) as prospective anti-proliferative agents: Synthesis, characterization, structures and in vitro anticancer activity
Tushar S. Basu Baul , Bietlaichhai Hlychho , Siddhartha Das Pramanik , Antonin Lyčka , Partha Roy , Abdallah G. Mahmoud , M. Fátima C. Guedes da Silva
{"title":"Organotin(IV) complexes derived from 2,6-diacetylpyridine bis(2-hydroxybenzoylhydrazone) as prospective anti-proliferative agents: Synthesis, characterization, structures and in vitro anticancer activity","authors":"Tushar S. Basu Baul , Bietlaichhai Hlychho , Siddhartha Das Pramanik , Antonin Lyčka , Partha Roy , Abdallah G. Mahmoud , M. Fátima C. Guedes da Silva","doi":"10.1016/j.jinorgbio.2024.112693","DOIUrl":null,"url":null,"abstract":"<div><p>Six organotin(IV) complexes, <em>viz.</em>, [Me<sub>2</sub>Sn(L)] (<strong>1</strong>), [<em>n</em>-Bu<sub>2</sub>Sn(L)] (<strong>2</strong>), [<em>n</em>-Oct<sub>2</sub>Sn(L)] (<strong>3</strong>), [Bz<sub>2</sub>Sn(L)]·0.5C<sub>7</sub>H<sub>8</sub> (<strong>4</strong>), [<em>n</em>-BuSn(L)Cl] (<strong>5</strong>), and [PhSn(L)Cl] (<strong>6</strong>), were synthesized using a 2,6-diacetylpyridine bis(2-hydroxybenzoylhydrazone), <strong>H</strong><sub><strong>2</strong></sub><strong>L</strong>. Compounds were characterized by Fourier transform infrared (FT-IR), High-resolution mass spectrometry (HRMS), and solutions Fourier transform nuclear magnetic resonance (FT-NMR) spectroscopies. The structures <strong>1</strong>–<strong>6</strong> were established by single-crystal X-ray diffraction (SC-XRD) analysis. Diffraction results evidenced that complexes <strong>1–6</strong> were seven-coordinated mononuclear species with the equatorial plane comprising the pentagonal N<sub>3</sub>O<sub>2</sub> chelate ring of the doubly deprotonated L and two axial ligands, either R (R = Me, <em>n</em>-Bu, <em>n</em>-Oct, Bz) or R (<em>n</em>-Bu or Ph) and Cl ligands. Additionally, the photophysical properties were examined due to the enhanced conjugation and rigidity of the molecules while thermogravimetric analysis was carried out to evaluate the thermal stabilities of compounds. The anti-proliferative activity of the complexes <strong>1</strong>–<strong>6</strong> was tested against prostate cancer cells (DU-145) and normal human embryonic kidney cells (HEK-293). Among the compounds, dibutyltin compound <strong>2</strong> exhibited increased anti-proliferative activity, with an IC<sub>50</sub> value of 6.16 ± 1.56 μM. The investigation of its mechanism of action involves using AO/EB (acridine orange/ethidium bromide) and ROS (reactive oxygen species) generation assays. This likely detects apoptotic morphological alterations in the nucleus of the cells, with ROS generation ultimately leading to apoptosis and cell death. The superior activity of <strong>2</strong> may be attributed to the C···H contacts and respective higher <em>d</em><sub><em>e</em></sub> outside and <em>d</em><sub><em>i</em></sub> inside distances from the Hirshfeld surface. Thus, these compounds could be a promising alternative to classical chemotherapy agents.</p></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"261 ","pages":"Article 112693"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013424002174","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Six organotin(IV) complexes, viz., [Me2Sn(L)] (1), [n-Bu2Sn(L)] (2), [n-Oct2Sn(L)] (3), [Bz2Sn(L)]·0.5C7H8 (4), [n-BuSn(L)Cl] (5), and [PhSn(L)Cl] (6), were synthesized using a 2,6-diacetylpyridine bis(2-hydroxybenzoylhydrazone), H2L. Compounds were characterized by Fourier transform infrared (FT-IR), High-resolution mass spectrometry (HRMS), and solutions Fourier transform nuclear magnetic resonance (FT-NMR) spectroscopies. The structures 1–6 were established by single-crystal X-ray diffraction (SC-XRD) analysis. Diffraction results evidenced that complexes 1–6 were seven-coordinated mononuclear species with the equatorial plane comprising the pentagonal N3O2 chelate ring of the doubly deprotonated L and two axial ligands, either R (R = Me, n-Bu, n-Oct, Bz) or R (n-Bu or Ph) and Cl ligands. Additionally, the photophysical properties were examined due to the enhanced conjugation and rigidity of the molecules while thermogravimetric analysis was carried out to evaluate the thermal stabilities of compounds. The anti-proliferative activity of the complexes 1–6 was tested against prostate cancer cells (DU-145) and normal human embryonic kidney cells (HEK-293). Among the compounds, dibutyltin compound 2 exhibited increased anti-proliferative activity, with an IC50 value of 6.16 ± 1.56 μM. The investigation of its mechanism of action involves using AO/EB (acridine orange/ethidium bromide) and ROS (reactive oxygen species) generation assays. This likely detects apoptotic morphological alterations in the nucleus of the cells, with ROS generation ultimately leading to apoptosis and cell death. The superior activity of 2 may be attributed to the C···H contacts and respective higher de outside and di inside distances from the Hirshfeld surface. Thus, these compounds could be a promising alternative to classical chemotherapy agents.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.