Proteomic analysis revealed gender-related differences in the skin mucus proteome of discus fish (Symphysodon haraldi) during the parental and non-parental care periods
{"title":"Proteomic analysis revealed gender-related differences in the skin mucus proteome of discus fish (Symphysodon haraldi) during the parental and non-parental care periods","authors":"Shi-Chen Zhao , Bin Wen , Jian-Zhong Gao , Zai-Zhong Chen","doi":"10.1016/j.cbd.2024.101314","DOIUrl":null,"url":null,"abstract":"<div><p>The discus fish, <em>Symphysodon</em> spp., a South American cichlid, has a unique parental care behavior where fry bite on parental skin mucus after hatching. In this study, we used LC-MS/MS technique to compare the skin mucus proteome composition of male or female discus fish during parental and non-parental care periods. By multivariate statistical analysis, we found clear separations between different periods and between different sexes of mucus proteome. Compared with non-parental female fish, parental female fish had 283 up-regulated and 235 down-regulated expressed proteins. Compared with non-parental male fish, parental male fish had 169 up-regulated and 120 down-regulated expressed proteins. The differentially expressed proteins for male fish were enriched in sulfur relay system, mucin type O-glycan biosynthesis and antigen processing and presentation pathways, while those for female fish were enriched in sulfur relay system, steroid biosynthesis and complement and coagulation cascades pathways. During the parental care, both male and female discus showed an enhanced lipid metabolism, producing more phospholipids and cholesterol. The difference is that male discus had increased tricarboxylic acid cycle producing more energy during the parental care, while females produced more nucleotides especially guanylic acid. Our study could provide new insights into the understanding of the unique mucus supply behavior of discus fish based on proteomic change.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X24001278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The discus fish, Symphysodon spp., a South American cichlid, has a unique parental care behavior where fry bite on parental skin mucus after hatching. In this study, we used LC-MS/MS technique to compare the skin mucus proteome composition of male or female discus fish during parental and non-parental care periods. By multivariate statistical analysis, we found clear separations between different periods and between different sexes of mucus proteome. Compared with non-parental female fish, parental female fish had 283 up-regulated and 235 down-regulated expressed proteins. Compared with non-parental male fish, parental male fish had 169 up-regulated and 120 down-regulated expressed proteins. The differentially expressed proteins for male fish were enriched in sulfur relay system, mucin type O-glycan biosynthesis and antigen processing and presentation pathways, while those for female fish were enriched in sulfur relay system, steroid biosynthesis and complement and coagulation cascades pathways. During the parental care, both male and female discus showed an enhanced lipid metabolism, producing more phospholipids and cholesterol. The difference is that male discus had increased tricarboxylic acid cycle producing more energy during the parental care, while females produced more nucleotides especially guanylic acid. Our study could provide new insights into the understanding of the unique mucus supply behavior of discus fish based on proteomic change.