{"title":"Universal proof theory: Semi-analytic rules and Craig interpolation","authors":"Amirhossein Akbar Tabatabai , Raheleh Jalali","doi":"10.1016/j.apal.2024.103509","DOIUrl":null,"url":null,"abstract":"<div><p>We provide a general and syntactically defined family of sequent calculi, called <em>semi-analytic</em>, to formalize the informal notion of a “nice” sequent calculus. We show that any sufficiently strong (multimodal) substructural logic with a semi-analytic sequent calculus enjoys the Craig Interpolation Property, CIP. As a positive application, our theorem provides a uniform and modular method to prove the CIP for several multimodal substructural logics, including many fragments and variants of linear logic. More interestingly, on the negative side, it employs the lack of the CIP in almost all substructural, superintuitionistic and modal logics to provide a formal proof for the well-known intuition that almost all logics do not have a “nice” sequent calculus. More precisely, we show that many substructural logics including <span><math><mi>U</mi><msup><mrow><mi>L</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>, <span><math><mi>MTL</mi></math></span>, <span><math><mi>R</mi></math></span>, <span>Ł</span><sub><em>n</em></sub> (for <span><math><mi>n</mi><mo>⩾</mo><mn>3</mn></math></span>), <span>G</span><sub><em>n</em></sub> (for <span><math><mi>n</mi><mo>⩾</mo><mn>4</mn></math></span>), and almost all extensions of <span><math><mi>IMTL</mi></math></span>, <span><math><mi>Ł</mi></math></span>, <span><math><mi>BL</mi></math></span>, <span><math><mi>R</mi><msup><mrow><mi>M</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span>, <span><math><mi>IPC</mi></math></span>, <span><math><mi>S4</mi></math></span>, and <span><math><mi>Grz</mi></math></span> (except for at most 1, 1, 3, 8, 7, 37, and 6 of them, respectively) do not have a semi-analytic calculus.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 1","pages":"Article 103509"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007224001131","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
We provide a general and syntactically defined family of sequent calculi, called semi-analytic, to formalize the informal notion of a “nice” sequent calculus. We show that any sufficiently strong (multimodal) substructural logic with a semi-analytic sequent calculus enjoys the Craig Interpolation Property, CIP. As a positive application, our theorem provides a uniform and modular method to prove the CIP for several multimodal substructural logics, including many fragments and variants of linear logic. More interestingly, on the negative side, it employs the lack of the CIP in almost all substructural, superintuitionistic and modal logics to provide a formal proof for the well-known intuition that almost all logics do not have a “nice” sequent calculus. More precisely, we show that many substructural logics including , , , Łn (for ), Gn (for ), and almost all extensions of , , , , , , and (except for at most 1, 1, 3, 8, 7, 37, and 6 of them, respectively) do not have a semi-analytic calculus.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.