Suppression of nonsynchronous vibration in a foil air bearing rotor system through piezoelectric actuation of the top foil—A theoretical investigation

IF 4.3 2区 工程技术 Q1 ACOUSTICS
{"title":"Suppression of nonsynchronous vibration in a foil air bearing rotor system through piezoelectric actuation of the top foil—A theoretical investigation","authors":"","doi":"10.1016/j.jsv.2024.118675","DOIUrl":null,"url":null,"abstract":"<div><p>It is well documented that the static and dynamic performance of foil air bearings (FABs) can be improved through the alteration of the radial clearance profile. One way of achieving such controllability is through piezoelectric actuation of the top foil. Such a piezoelectric foil air bearing (PFAB) avoids the dynamics complications introduced by alternative actuating mechanisms. So far, theoretical analysis of a PFAB pad in isolation has shown that top foil actuation can raise the static load capacity. This paper theoretically investigates the potential for improving the dynamic performance. A computational approach that uses Galerkin Reduction (GR) to model the air film and considers the detachment of the top foil from the bump foil is upgraded for multi-pad PFABs, thus facilitating parameter optimization. The investigation considers two conventional FAB rotor systems from the literature that exhibit strong sub-synchronous vibrations under high unbalance. It is found that the optimal voltage and placement of piezoelectric patches can result in total suppression of the strong sub-synchronous frequencies, as well as a rise in the onset of instability speed. The polarity of the voltage required for suppression of the sub-synchronous frequencies is found to be opposite to that required to raise the load capacity.</p></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X24004371","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

It is well documented that the static and dynamic performance of foil air bearings (FABs) can be improved through the alteration of the radial clearance profile. One way of achieving such controllability is through piezoelectric actuation of the top foil. Such a piezoelectric foil air bearing (PFAB) avoids the dynamics complications introduced by alternative actuating mechanisms. So far, theoretical analysis of a PFAB pad in isolation has shown that top foil actuation can raise the static load capacity. This paper theoretically investigates the potential for improving the dynamic performance. A computational approach that uses Galerkin Reduction (GR) to model the air film and considers the detachment of the top foil from the bump foil is upgraded for multi-pad PFABs, thus facilitating parameter optimization. The investigation considers two conventional FAB rotor systems from the literature that exhibit strong sub-synchronous vibrations under high unbalance. It is found that the optimal voltage and placement of piezoelectric patches can result in total suppression of the strong sub-synchronous frequencies, as well as a rise in the onset of instability speed. The polarity of the voltage required for suppression of the sub-synchronous frequencies is found to be opposite to that required to raise the load capacity.

通过压电驱动顶箔抑制箔式空气轴承转子系统中的非同步振动--理论研究
有资料表明,箔空气轴承(FAB)的静态和动态性能可以通过改变径向间隙轮廓得到改善。实现这种可控性的一种方法是通过压电驱动顶部箔片。这种压电箔空气轴承(PFAB)避免了其他驱动机制带来的动态复杂性。迄今为止,对孤立的 PFAB 垫进行的理论分析表明,顶箔致动可提高静载荷能力。本文从理论上研究了提高动态性能的潜力。针对多衬垫 PFAB,升级了一种使用 Galerkin 还原 (GR) 建立气膜模型的计算方法,并考虑了顶箔与凹凸箔的脱离,从而促进了参数优化。研究考虑了文献中的两个传统 FAB 转子系统,它们在高不平衡下表现出强烈的次同步振动。研究发现,压电贴片的最佳电压和位置可完全抑制强次同步频率,并提高不稳定速度。研究发现,抑制亚同步频率所需的电压极性与提高负载能力所需的电压极性相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信