Peifang Luo , Zan Huang , Tingyu Wang , Hua Xiao , Xiuhua Ma , Ruihan Yan , Gengfeng Zhao
{"title":"Design and fabrication of nitrogen-doped graphene-promoted Na3MnTi(PO4)3@C cathode with three-electron reactions for sodium-ion storage","authors":"Peifang Luo , Zan Huang , Tingyu Wang , Hua Xiao , Xiuhua Ma , Ruihan Yan , Gengfeng Zhao","doi":"10.1016/j.solidstatesciences.2024.107678","DOIUrl":null,"url":null,"abstract":"<div><p>As a novel cathode material for sodium-ion batteries, Na<sub>3</sub>MnTi(PO<sub>4</sub>)<sub>3</sub> (denoted as NMTP) has received great attention because of its abundant natural resources, excellent safety, low toxicity as well as three-electron reactions. Unfortunately, the pure NMTP cathode displays a bad conductivity, resulting in an inferior electrochemical performance for sodium energy storage. Herein, we introduce a good route to fabricate the nitrogen-doped graphene-decorated NMTP@C (denoted as NG-NMTP@C) composite with superior rate property and superior cycle stability for the first time. In this fabricated material, the nitrogen-doped graphene nanosheets are dispersed into the NMTP@C particles. Compared to NMTP@C, the prepared NG-NMTP@C cathode possesses better cycle stability and higher capacity. It shows the capacity of 173.1 mAh g<sup>−1</sup> at 0.1 C and presents the high capacity retention of around 97.1 % at 10.0 C over 400 cycles. Therefore, this fabricated NG-NMTP@C nanocomposite can be employed as the novel positive electrode in sodium-ion storage.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"156 ","pages":"Article 107678"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255824002437","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
As a novel cathode material for sodium-ion batteries, Na3MnTi(PO4)3 (denoted as NMTP) has received great attention because of its abundant natural resources, excellent safety, low toxicity as well as three-electron reactions. Unfortunately, the pure NMTP cathode displays a bad conductivity, resulting in an inferior electrochemical performance for sodium energy storage. Herein, we introduce a good route to fabricate the nitrogen-doped graphene-decorated NMTP@C (denoted as NG-NMTP@C) composite with superior rate property and superior cycle stability for the first time. In this fabricated material, the nitrogen-doped graphene nanosheets are dispersed into the NMTP@C particles. Compared to NMTP@C, the prepared NG-NMTP@C cathode possesses better cycle stability and higher capacity. It shows the capacity of 173.1 mAh g−1 at 0.1 C and presents the high capacity retention of around 97.1 % at 10.0 C over 400 cycles. Therefore, this fabricated NG-NMTP@C nanocomposite can be employed as the novel positive electrode in sodium-ion storage.
期刊介绍:
Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments.
Key topics for stand-alone papers and special issues:
-Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials
-Physical properties, emphasizing but not limited to the electrical, magnetical and optical features
-Materials related to information technology and energy and environmental sciences.
The journal publishes feature articles from experts in the field upon invitation.
Solid State Sciences - your gateway to energy-related materials.