Combination of machine learning and COSMO-RS thermodynamic model in predicting solubility parameters of coformers in production of cocrystals for enhanced drug solubility

IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS
Wael A. Mahdi , Ahmad J. Obaidullah
{"title":"Combination of machine learning and COSMO-RS thermodynamic model in predicting solubility parameters of coformers in production of cocrystals for enhanced drug solubility","authors":"Wael A. Mahdi ,&nbsp;Ahmad J. Obaidullah","doi":"10.1016/j.chemolab.2024.105219","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we develop predictive models for three target variables, denoted as <span><math><mrow><msub><mi>δ</mi><mi>d</mi></msub></mrow></math></span>, <span><math><mrow><msub><mi>δ</mi><mi>p</mi></msub></mrow></math></span>, and <span><math><mrow><msub><mi>δ</mi><mi>h</mi></msub></mrow></math></span> using a dataset with 86 features and 181 samples. The response parameters, which are Hansen solubility parameters, were correlated to input parameters via several machine learning techniques. The input features are molecular descriptors of coformers which are calculated based on COMSO-RS thermodynamic model and group contribution approach. The analysis includes outlier detection via Cook's distance, normalization with a min-max scaler, and feature selection through L1-based methods. Three regression models—Gaussian Process Regression (GPR), Passive Aggressive Regression (PAR), and Polynomial Regression (PR)—are employed, with hyperparameter optimization achieved using Transient Search Optimization (TSO). The results indicate that for <span><math><mrow><msub><mi>δ</mi><mi>d</mi></msub></mrow></math></span>, the PAR model outperforms others with an R<sup>2</sup> score of 0.885, RMSE of 0.607, MAE of 0.524, and a maximum error of 1.294. The GPR model shows slightly lower performance with an R<sup>2</sup> of 0.872, RMSE of 0.816, MAE of 0.579, and a maximum error of 2.755 for <span><math><mrow><msub><mi>δ</mi><mi>d</mi></msub></mrow></math></span>. The PR model performs on <span><math><mrow><msub><mi>δ</mi><mi>d</mi></msub></mrow></math></span> with an R<sup>2</sup> of 0.814, RMSE of 0.923, MAE of 0.597, and a maximum error of 2.814. For <span><math><mrow><msub><mi>δ</mi><mi>p</mi></msub></mrow></math></span>, the GPR model provides the best performance, achieving an R<sup>2</sup> score of 0.821, RMSE of 1.693, MAE of 1.391, and a maximum error of 3.457. The PAR model performs on <span><math><mrow><msub><mi>δ</mi><mi>p</mi></msub></mrow></math></span> with an R<sup>2</sup> of 0.740, RMSE of 2.025, MAE of 1.980, and a maximum error of 6.609. Also, The PR model predicts <span><math><mrow><msub><mi>δ</mi><mi>p</mi></msub></mrow></math></span> with a R<sup>2</sup> of 0.7, RMSE of 2.329, MAE of 2.02, and maximum error of 6.366. Similarly, for <span><math><mrow><msub><mi>δ</mi><mi>h</mi></msub></mrow></math></span>, the GPR model again shows superior performance with an R<sup>2</sup> score of 0.983, RMSE of 1.243, MAE of 1.005, and a maximum error of 2.577. The PAR model also accurately predicts <span><math><mrow><msub><mi>δ</mi><mi>h</mi></msub></mrow></math></span> with a R<sup>2</sup> of 0.924, RMSE of 2.713, MAE of 2.416, and maximum error of 6.307. Additionally, the PR model predicts <span><math><mrow><msub><mi>δ</mi><mi>h</mi></msub></mrow></math></span> with a R<sup>2</sup> of 0.927, RMSE of 2.757, MAE of 2.334, and maximum error of 8.064. These results highlight the efficacy of the chosen models and optimization techniques in accurately predicting the specified outputs, demonstrating significant potential for application in relevant predictive modeling tasks.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"253 ","pages":"Article 105219"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016974392400159X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we develop predictive models for three target variables, denoted as δd, δp, and δh using a dataset with 86 features and 181 samples. The response parameters, which are Hansen solubility parameters, were correlated to input parameters via several machine learning techniques. The input features are molecular descriptors of coformers which are calculated based on COMSO-RS thermodynamic model and group contribution approach. The analysis includes outlier detection via Cook's distance, normalization with a min-max scaler, and feature selection through L1-based methods. Three regression models—Gaussian Process Regression (GPR), Passive Aggressive Regression (PAR), and Polynomial Regression (PR)—are employed, with hyperparameter optimization achieved using Transient Search Optimization (TSO). The results indicate that for δd, the PAR model outperforms others with an R2 score of 0.885, RMSE of 0.607, MAE of 0.524, and a maximum error of 1.294. The GPR model shows slightly lower performance with an R2 of 0.872, RMSE of 0.816, MAE of 0.579, and a maximum error of 2.755 for δd. The PR model performs on δd with an R2 of 0.814, RMSE of 0.923, MAE of 0.597, and a maximum error of 2.814. For δp, the GPR model provides the best performance, achieving an R2 score of 0.821, RMSE of 1.693, MAE of 1.391, and a maximum error of 3.457. The PAR model performs on δp with an R2 of 0.740, RMSE of 2.025, MAE of 1.980, and a maximum error of 6.609. Also, The PR model predicts δp with a R2 of 0.7, RMSE of 2.329, MAE of 2.02, and maximum error of 6.366. Similarly, for δh, the GPR model again shows superior performance with an R2 score of 0.983, RMSE of 1.243, MAE of 1.005, and a maximum error of 2.577. The PAR model also accurately predicts δh with a R2 of 0.924, RMSE of 2.713, MAE of 2.416, and maximum error of 6.307. Additionally, the PR model predicts δh with a R2 of 0.927, RMSE of 2.757, MAE of 2.334, and maximum error of 8.064. These results highlight the efficacy of the chosen models and optimization techniques in accurately predicting the specified outputs, demonstrating significant potential for application in relevant predictive modeling tasks.

结合机器学习和 COSMO-RS 热力学模型预测共形物的溶解度参数,生产提高药物溶解度的共晶体
在本研究中,我们利用一个包含 86 个特征和 181 个样本的数据集开发了三个目标变量的预测模型,分别称为 δd、δp 和 δh。响应参数(即汉森溶解度参数)通过几种机器学习技术与输入参数相关联。输入特征是根据 COMSO-RS 热力学模型和基团贡献法计算得出的共配体分子描述符。分析包括通过库克距离(Cook's distance)进行离群点检测,使用最小-最大标度器进行归一化,以及通过基于 L1 的方法进行特征选择。采用了三种回归模型--高斯过程回归(GPR)、被动渐进回归(PAR)和多项式回归(PR),并通过瞬态搜索优化(TSO)实现了超参数优化。结果表明,对于 δd,PAR 模型的性能优于其他模型,R2 得分为 0.885,RMSE 为 0.607,MAE 为 0.524,最大误差为 1.294。GPR 模型的性能略低,δd 的 R2 为 0.872,RMSE 为 0.816,MAE 为 0.579,最大误差为 2.755。PR 模型对 δd 的 R2 为 0.814,RMSE 为 0.923,MAE 为 0.597,最大误差为 2.814。对于δp,GPR 模型性能最佳,R2 为 0.821,RMSE 为 1.693,MAE 为 1.391,最大误差为 3.457。PAR 模型预测 δp 的 R2 为 0.740,RMSE 为 2.025,MAE 为 1.980,最大误差为 6.609。同样,PR 模型预测 δp 的 R2 为 0.7,RMSE 为 2.329,MAE 为 2.02,最大误差为 6.366。同样,对于 δh,GPR 模型再次显示出卓越的性能,R2 为 0.983,RMSE 为 1.243,MAE 为 1.005,最大误差为 2.577。PAR 模型也能准确预测 δh,R2 为 0.924,RMSE 为 2.713,MAE 为 2.416,最大误差为 6.307。此外,PR 模型预测 δh 的 R2 为 0.927,RMSE 为 2.757,MAE 为 2.334,最大误差为 8.064。这些结果凸显了所选模型和优化技术在准确预测指定输出方面的功效,显示了在相关预测建模任务中的巨大应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信