{"title":"Unveiling Neural Networks for Personalized Diet Recommendations","authors":"Carlos Cunha , João Rebelo , Rui Duarte","doi":"10.1016/j.procs.2024.08.088","DOIUrl":null,"url":null,"abstract":"<div><p>The growing prevalence of poor nutrition is a major public health concern, as it fuels the rise of various diseases. Obesity, a silent and rapidly growing threat linked to unhealthy eating, is a prime example. Despite the abundance of information on diets and recipes, finding a personalized approach to healthy eating can be a challenge. Recommendation systems can filter from a food logging dataset the information that best suits the nutrition profile of a given user. A powerful tool to use in food recommendation systems is neural networks. However, the user's available data are often limited, which compromises the performance of neural-based food recommendation models. To enhance user trust in food recommendations, this paper proposes a method using a secondary model to predict the errors of the primary neural network, especially when dealing with limited data.</p></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"241 ","pages":"Pages 606-611"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S187705092401799X/pdf?md5=7f340af7ed27be1ddd744806a942c04e&pid=1-s2.0-S187705092401799X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187705092401799X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The growing prevalence of poor nutrition is a major public health concern, as it fuels the rise of various diseases. Obesity, a silent and rapidly growing threat linked to unhealthy eating, is a prime example. Despite the abundance of information on diets and recipes, finding a personalized approach to healthy eating can be a challenge. Recommendation systems can filter from a food logging dataset the information that best suits the nutrition profile of a given user. A powerful tool to use in food recommendation systems is neural networks. However, the user's available data are often limited, which compromises the performance of neural-based food recommendation models. To enhance user trust in food recommendations, this paper proposes a method using a secondary model to predict the errors of the primary neural network, especially when dealing with limited data.