Jiawan Yang , Xuqi Zhu , Defei Kong , Yi Wang , Yan Yang , Yunjun Liu , Hui Yin
{"title":"Significant enhancement of anticancer effect of iridium (III) complexes encapsulated in liposomes","authors":"Jiawan Yang , Xuqi Zhu , Defei Kong , Yi Wang , Yan Yang , Yunjun Liu , Hui Yin","doi":"10.1016/j.jinorgbio.2024.112706","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the ligand EIPP (5-ethoxy-2-(1H-imidazo[4,5-f] [<span><span>1</span></span>,<span><span>10</span></span>] phenanthrolin-2-yl)phenol) and [Ir(ppy)<sub>2</sub>(EIPP)](PF<sub>6</sub>)] (5a, ppy = 2-phenylpyridine) and [Ir(piq)<sub>2</sub>(EIPP)](PF<sub>6</sub>)] (5b, piq = 1-phenylisoquinoline) were synthesized and they were entrapped into liposomes to produce 5alipo and 5blipo. 5a and 5b were characterized via HRMS, NMR, UV–vis and IR. The cytotoxicity of 5a, 5b, 5alipo and 5blipo on cancer and non-cancer cells was estimated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). MTT assay demonstrated that 5a and 5b did not show any significant cellular activity but their liposome-encapsulated 5alipo and 5blipo had significant toxic effects. The mechanism of 5alipo, 5blipo-inducing apoptosis was explored by studying cellular uptake, mitochondrial localization, mitochondrial membrane potential, cytochrome C, glutathione (GSH), malondialdehyde (MDA) and protein immunoblotting. The results demonstrated that 5alipo and 5blipo caused a release of cytochrome C, downregulated the expression of Bcl-2, upregulated the expression of BAX, activated caspase 3, and downregulated PARP expression. It was shown that 5alipo and 5blipo could inhibit cancer cell proliferation in G2/M phase by regulating p53 and p21 proteins. Additionally, 5alipo and 5blipo induced autophagy through an adjustment from LC3-I to LC3-II and caused ferroptosis. The in vivo antitumor activity of 5alipo was examined in detail</p></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"261 ","pages":"Article 112706"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013424002307","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the ligand EIPP (5-ethoxy-2-(1H-imidazo[4,5-f] [1,10] phenanthrolin-2-yl)phenol) and [Ir(ppy)2(EIPP)](PF6)] (5a, ppy = 2-phenylpyridine) and [Ir(piq)2(EIPP)](PF6)] (5b, piq = 1-phenylisoquinoline) were synthesized and they were entrapped into liposomes to produce 5alipo and 5blipo. 5a and 5b were characterized via HRMS, NMR, UV–vis and IR. The cytotoxicity of 5a, 5b, 5alipo and 5blipo on cancer and non-cancer cells was estimated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). MTT assay demonstrated that 5a and 5b did not show any significant cellular activity but their liposome-encapsulated 5alipo and 5blipo had significant toxic effects. The mechanism of 5alipo, 5blipo-inducing apoptosis was explored by studying cellular uptake, mitochondrial localization, mitochondrial membrane potential, cytochrome C, glutathione (GSH), malondialdehyde (MDA) and protein immunoblotting. The results demonstrated that 5alipo and 5blipo caused a release of cytochrome C, downregulated the expression of Bcl-2, upregulated the expression of BAX, activated caspase 3, and downregulated PARP expression. It was shown that 5alipo and 5blipo could inhibit cancer cell proliferation in G2/M phase by regulating p53 and p21 proteins. Additionally, 5alipo and 5blipo induced autophagy through an adjustment from LC3-I to LC3-II and caused ferroptosis. The in vivo antitumor activity of 5alipo was examined in detail
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.