{"title":"Crystal structure of the GDP-bound human M-RAS protein in two crystal forms","authors":"Stephanie M. Bester, Rebecca Abrahamsen, Luiza Rodrigues Samora, Wen-I Wu, Tung-Chung Mou","doi":"10.1107/S2053230X24007969","DOIUrl":null,"url":null,"abstract":"<p>M-RAS plays a crucial role in the RAF–MEK signaling pathway. When activated by GTP, M-RAS forms a complex with SHOC2 and PP1C, initiating downstream RAF–MEK signal transduction. In this study, the crystal structure of the GDP-bound human M-RAS protein is presented with two forms of crystal packing. Both the full-length and truncated human M-RAS structures aligned well with the high-confidence section of the <i>AlphaFold</i>2-predicted structure with low r.m.s.d., except for the Switch regions. Despite high sequence similarity to the available mouse M-RAS structure, the full-length human M-RAS structure exhibits unique crystal packing. This inactive human M-RAS structure could offer novel insights for the design of selective compounds targeting M-RAS.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section F, Structural biology communications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S2053230X24007969","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
M-RAS plays a crucial role in the RAF–MEK signaling pathway. When activated by GTP, M-RAS forms a complex with SHOC2 and PP1C, initiating downstream RAF–MEK signal transduction. In this study, the crystal structure of the GDP-bound human M-RAS protein is presented with two forms of crystal packing. Both the full-length and truncated human M-RAS structures aligned well with the high-confidence section of the AlphaFold2-predicted structure with low r.m.s.d., except for the Switch regions. Despite high sequence similarity to the available mouse M-RAS structure, the full-length human M-RAS structure exhibits unique crystal packing. This inactive human M-RAS structure could offer novel insights for the design of selective compounds targeting M-RAS.
期刊介绍:
Acta Crystallographica Section F is a rapid structural biology communications journal.
Articles on any aspect of structural biology, including structures determined using high-throughput methods or from iterative studies such as those used in the pharmaceutical industry, are welcomed by the journal.
The journal offers the option of open access, and all communications benefit from unlimited free use of colour illustrations and no page charges. Authors are encouraged to submit multimedia content for publication with their articles.
Acta Cryst. F has a dedicated online tool called publBio that is designed to make the preparation and submission of articles easier for authors.