Xu Zhang, Zhe Chen, Jing Zhang, Tongliang Liu, Dacheng Tao
{"title":"Learning General and Specific Embedding with Transformer for Few-Shot Object Detection","authors":"Xu Zhang, Zhe Chen, Jing Zhang, Tongliang Liu, Dacheng Tao","doi":"10.1007/s11263-024-02199-0","DOIUrl":null,"url":null,"abstract":"<p>Few-shot object detection (FSOD) studies how to detect novel objects with few annotated examples effectively. Recently, it has been demonstrated that decent feature embeddings, including the general feature embeddings that are more invariant to visual changes and the specific feature embeddings that are more discriminative for different object classes, are both important for FSOD. However, current methods lack appropriate mechanisms to sensibly cooperate both types of feature embeddings based on their importance to detecting objects of novel classes, which may result in sub-optimal performance. In this paper, to achieve more effective FSOD, we attempt to explicitly encode both general and specific feature embeddings using learnable tensors and apply a Transformer to help better incorporate them in FSOD according to their relations to the input object features. We thus propose a Transformer-based general and specific embedding learning (T-GSEL) method for FSOD. In T-GSEL, learnable tensors are employed in a three-stage pipeline, encoding feature embeddings in general level, intermediate level, and specific level, respectively. In each stage, we apply a Transformer to first model the relations of the corresponding embedding to input object features and then apply the estimated relations to refine the input features. Meanwhile, we further introduce cross-stage connections between embeddings of different stages to make them complement and cooperate with each other, delivering general, intermediate, and specific feature embeddings stage by stage and utilizing them together for feature refinement in FSOD. In practice, a T-GSEL module is easy to inject. Extensive empirical results further show that our proposed T-GSEL method achieves compelling FSOD performance on both PASCAL VOC and MS COCO datasets compared with other state-of-the-art approaches.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"5 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02199-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Few-shot object detection (FSOD) studies how to detect novel objects with few annotated examples effectively. Recently, it has been demonstrated that decent feature embeddings, including the general feature embeddings that are more invariant to visual changes and the specific feature embeddings that are more discriminative for different object classes, are both important for FSOD. However, current methods lack appropriate mechanisms to sensibly cooperate both types of feature embeddings based on their importance to detecting objects of novel classes, which may result in sub-optimal performance. In this paper, to achieve more effective FSOD, we attempt to explicitly encode both general and specific feature embeddings using learnable tensors and apply a Transformer to help better incorporate them in FSOD according to their relations to the input object features. We thus propose a Transformer-based general and specific embedding learning (T-GSEL) method for FSOD. In T-GSEL, learnable tensors are employed in a three-stage pipeline, encoding feature embeddings in general level, intermediate level, and specific level, respectively. In each stage, we apply a Transformer to first model the relations of the corresponding embedding to input object features and then apply the estimated relations to refine the input features. Meanwhile, we further introduce cross-stage connections between embeddings of different stages to make them complement and cooperate with each other, delivering general, intermediate, and specific feature embeddings stage by stage and utilizing them together for feature refinement in FSOD. In practice, a T-GSEL module is easy to inject. Extensive empirical results further show that our proposed T-GSEL method achieves compelling FSOD performance on both PASCAL VOC and MS COCO datasets compared with other state-of-the-art approaches.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.