{"title":"Multi-Satellite MIMO Systems for Direct Satellite-to-Device Communications: A Survey","authors":"Zohre Mashayekh Bakhsh;Yasaman Omid;Gaojie Chen;Farbod Kayhan;Yi Ma;Rahim Tafazolli","doi":"10.1109/COMST.2024.3449430","DOIUrl":null,"url":null,"abstract":"Advancements in satellite technology have made direct satellite-to-device connectivity a viable solution for ensuring global access. This method is designed to provide Internet connectivity to remote, rural, or underserved areas where traditional cellular or broadband networks are lacking or insufficient. This paper is a survey providing an in-depth review of multi-satellite Multiple Input Multiple Output (MIMO) systems as a potential solution for addressing the link budget challenge in direct satellite-to-device communication. Special attention is given to works considering multi-satellite MIMO systems, both with and without satellite collaboration. In this context, collaboration refers to sharing data between satellites to improve the performance of the system. This survey starts by highlighting the industry’s views on the importance of enabling the direct satellite-to-device communications. It follows by explaining several fundamental aspects of satellite communications (SatComs), which are vital prerequisites before investigating the multi-satellite MIMO systems. These aspects encompass satellite orbits, the structure of satellite systems, SatCom links, including the inter-satellite links (ISL) which facilitate satellite cooperation, satellite frequency bands, satellite antenna design, and satellite channel models, which should be known or estimated for effective data transmission to and from multiple satellites. Furthermore, this survey distinguishes itself by providing more comprehensive insights in comparison to other surveys. It specifically delves into the Orthogonal Time Frequency Space (OTFS) within the channel model section. It goes into detail about ISL noise and ISL channel model, and it extends the ISL section by thoroughly investigating hybrid FSO/RF ISLs. Furthermore, analytical comparisons of simulation results from these works are presented to highlight the advantages of employing multi-satellite MIMO systems.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"27 3","pages":"1536-1564"},"PeriodicalIF":34.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10646360/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in satellite technology have made direct satellite-to-device connectivity a viable solution for ensuring global access. This method is designed to provide Internet connectivity to remote, rural, or underserved areas where traditional cellular or broadband networks are lacking or insufficient. This paper is a survey providing an in-depth review of multi-satellite Multiple Input Multiple Output (MIMO) systems as a potential solution for addressing the link budget challenge in direct satellite-to-device communication. Special attention is given to works considering multi-satellite MIMO systems, both with and without satellite collaboration. In this context, collaboration refers to sharing data between satellites to improve the performance of the system. This survey starts by highlighting the industry’s views on the importance of enabling the direct satellite-to-device communications. It follows by explaining several fundamental aspects of satellite communications (SatComs), which are vital prerequisites before investigating the multi-satellite MIMO systems. These aspects encompass satellite orbits, the structure of satellite systems, SatCom links, including the inter-satellite links (ISL) which facilitate satellite cooperation, satellite frequency bands, satellite antenna design, and satellite channel models, which should be known or estimated for effective data transmission to and from multiple satellites. Furthermore, this survey distinguishes itself by providing more comprehensive insights in comparison to other surveys. It specifically delves into the Orthogonal Time Frequency Space (OTFS) within the channel model section. It goes into detail about ISL noise and ISL channel model, and it extends the ISL section by thoroughly investigating hybrid FSO/RF ISLs. Furthermore, analytical comparisons of simulation results from these works are presented to highlight the advantages of employing multi-satellite MIMO systems.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.