On the construction of certain odd degree irreducible polynomials over finite fields

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Melek Çil, Barış Bülent Kırlar
{"title":"On the construction of certain odd degree irreducible polynomials over finite fields","authors":"Melek Çil, Barış Bülent Kırlar","doi":"10.1007/s10623-024-01479-7","DOIUrl":null,"url":null,"abstract":"<p>For an odd prime power <i>q</i>, let <span>\\(\\mathbb {F}_{q^2}=\\mathbb {F}_q(\\alpha )\\)</span>, <span>\\(\\alpha ^2=t\\in \\mathbb {F}_q\\)</span> be the quadratic extension of the finite field <span>\\(\\mathbb {F}_q\\)</span>. In this paper, we consider the irreducible polynomials <span>\\(F(x)=x^k-c_1x^{k-1}+c_2x^{k-2}-\\cdots -c_{2}^qx^2+c_{1}^qx-1\\)</span> over <span>\\(\\mathbb {F}_{q^2}\\)</span>, where <i>k</i> is an odd integer and the coefficients <span>\\(c_i\\)</span> are in the form <span>\\(c_i=a_i+b_i\\alpha \\)</span> with at least one <span>\\(b_i\\ne 0\\)</span>. For a given such irreducible polynomial <i>F</i>(<i>x</i>) over <span>\\(\\mathbb {F}_{q^2}\\)</span>, we provide an algorithm to construct an irreducible polynomial <span>\\(G(x)=x^k-A_1x^{k-1}+A_2x^{k-2}-\\cdots -A_{k-2}x^2+A_{k-1}x-A_k\\)</span> over <span>\\(\\mathbb {F}_q\\)</span>, where the <span>\\(A_i\\)</span>’s are explicitly given in terms of the <span>\\(c_i\\)</span>’s. This gives a bijective correspondence between irreducible polynomials over <span>\\(\\mathbb {F}_{q^2}\\)</span> and <span>\\(\\mathbb {F}_q\\)</span>. This fact generalizes many recent results on this subject in the literature.\n</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01479-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For an odd prime power q, let \(\mathbb {F}_{q^2}=\mathbb {F}_q(\alpha )\), \(\alpha ^2=t\in \mathbb {F}_q\) be the quadratic extension of the finite field \(\mathbb {F}_q\). In this paper, we consider the irreducible polynomials \(F(x)=x^k-c_1x^{k-1}+c_2x^{k-2}-\cdots -c_{2}^qx^2+c_{1}^qx-1\) over \(\mathbb {F}_{q^2}\), where k is an odd integer and the coefficients \(c_i\) are in the form \(c_i=a_i+b_i\alpha \) with at least one \(b_i\ne 0\). For a given such irreducible polynomial F(x) over \(\mathbb {F}_{q^2}\), we provide an algorithm to construct an irreducible polynomial \(G(x)=x^k-A_1x^{k-1}+A_2x^{k-2}-\cdots -A_{k-2}x^2+A_{k-1}x-A_k\) over \(\mathbb {F}_q\), where the \(A_i\)’s are explicitly given in terms of the \(c_i\)’s. This gives a bijective correspondence between irreducible polynomials over \(\mathbb {F}_{q^2}\) and \(\mathbb {F}_q\). This fact generalizes many recent results on this subject in the literature.

论有限域上某些奇度不可还原多项式的构造
对于奇素数幂 q,让 \(\mathbb {F}_{q^2}=\mathbb {F}_q(\alpha )\), \(\alpha ^2=t\in \mathbb {F}_q\) 是有限域 \(\mathbb {F}_q\) 的二次展开。本文将考虑在 \(\mathbb {F}_{q^2}\) 上的不可约多项式 \(F(x)=x^k-c_1x^{k-1}+c_2x^{k-2}-\cdots -c_{2}^qx^2+c_{1}^qx-1\) 、其中 k 是奇整数,系数 \(c_i\) 的形式是 \(c_i=a_i+b_i\alpha \),其中至少有一个 \(b_i\ne 0\).对于在 \(\mathbb {F}_{q^2}\) 上给定的不可还原多项式 F(x)、我们提供了一种算法来在\(\mathbb {F}_q\) 上构造一个不可还原多项式 \(G(x)=x^k-A_1x^{k-1}+A_2x^{k-2}-\cdots -A_{k-2}x^2+A_{k-1}x-A_k\) ,其中 \(A_i\)的值是通过 \(c_i\)的值明确给出的。这给出了 \(\mathbb {F}_{q^2}\) 和 \(\mathbb {F}_q\) 上的不可约多项式之间的双射对应关系。这一事实概括了文献中关于这一主题的许多最新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信