Decomposing Imaginary-Time Feynman Diagrams Using Separable Basis Functions: Anderson Impurity Model Strong-Coupling Expansion

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Jason Kaye, Zhen Huang, Hugo U. R. Strand, Denis Golež
{"title":"Decomposing Imaginary-Time Feynman Diagrams Using Separable Basis Functions: Anderson Impurity Model Strong-Coupling Expansion","authors":"Jason Kaye, Zhen Huang, Hugo U. R. Strand, Denis Golež","doi":"10.1103/physrevx.14.031034","DOIUrl":null,"url":null,"abstract":"We present a deterministic algorithm for the efficient evaluation of imaginary-time diagrams based on the recently introduced discrete Lehmann representation (DLR) of imaginary-time Green’s functions. In addition to the efficient discretization of diagrammatic integrals afforded by its approximation properties, the DLR basis is separable in imaginary-time, allowing us to decompose diagrams into linear combinations of nested sequences of one-dimensional products and convolutions. Focusing on the strong-coupling bold-line expansion of generalized Anderson impurity models, we show that our strategy reduces the computational complexity of evaluating an <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>M</mi></math>th-order diagram at inverse temperature <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>β</mi></math> and spectral width <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>ω</mi><mi>max</mi></msub></math> from <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">O</mi><mo mathvariant=\"bold\" stretchy=\"false\">(</mo><mrow><mo stretchy=\"false\">(</mo><mi>β</mi><msub><mrow><mi>ω</mi></mrow><mrow><mi>max</mi></mrow></msub><msup><mrow><mo stretchy=\"false\">)</mo></mrow><mrow><mn>2</mn><mi>M</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow><mo mathvariant=\"bold\" stretchy=\"false\">)</mo></mrow></math> for a direct quadrature to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">O</mi><mo mathvariant=\"bold\" stretchy=\"false\">(</mo><mrow><mi>M</mi><mo stretchy=\"false\">(</mo><mi>log</mi><mo stretchy=\"false\">(</mo><mi>β</mi><msub><mrow><mi>ω</mi></mrow><mrow><mi>max</mi></mrow></msub><mo stretchy=\"false\">)</mo><msup><mrow><mo stretchy=\"false\">)</mo></mrow><mrow><mi>M</mi><mo>+</mo><mn>1</mn></mrow></msup></mrow><mo mathvariant=\"bold\" stretchy=\"false\">)</mo></mrow></math>, with controllable high-order accuracy. We benchmark our algorithm using third-order expansions for multiband impurity problems with off-diagonal hybridization and spin-orbit coupling, presenting comparisons with exact diagonalization and quantum Monte Carlo approaches. In particular, we perform a self-consistent dynamical mean-field theory calculation for a three-band Hubbard model with strong spin-orbit coupling representing a minimal model of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>Ca</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><msub><mrow><mi>RuO</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></math>, demonstrating the promise of the method for modeling realistic strongly correlated multiband materials. For both strong and weak coupling expansions of low and intermediate order, in which diagrams can be enumerated, our method provides an efficient, straightforward, and robust blackbox evaluation procedure. In this sense, it fills a gap between diagrammatic approximations of the lowest order, which are simple and inexpensive but inaccurate, and those based on Monte Carlo sampling of high-order diagrams.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":11.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.031034","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a deterministic algorithm for the efficient evaluation of imaginary-time diagrams based on the recently introduced discrete Lehmann representation (DLR) of imaginary-time Green’s functions. In addition to the efficient discretization of diagrammatic integrals afforded by its approximation properties, the DLR basis is separable in imaginary-time, allowing us to decompose diagrams into linear combinations of nested sequences of one-dimensional products and convolutions. Focusing on the strong-coupling bold-line expansion of generalized Anderson impurity models, we show that our strategy reduces the computational complexity of evaluating an Mth-order diagram at inverse temperature β and spectral width ωmax from O((βωmax)2M1) for a direct quadrature to O(M(log(βωmax))M+1), with controllable high-order accuracy. We benchmark our algorithm using third-order expansions for multiband impurity problems with off-diagonal hybridization and spin-orbit coupling, presenting comparisons with exact diagonalization and quantum Monte Carlo approaches. In particular, we perform a self-consistent dynamical mean-field theory calculation for a three-band Hubbard model with strong spin-orbit coupling representing a minimal model of Ca2RuO4, demonstrating the promise of the method for modeling realistic strongly correlated multiband materials. For both strong and weak coupling expansions of low and intermediate order, in which diagrams can be enumerated, our method provides an efficient, straightforward, and robust blackbox evaluation procedure. In this sense, it fills a gap between diagrammatic approximations of the lowest order, which are simple and inexpensive but inaccurate, and those based on Monte Carlo sampling of high-order diagrams.

Abstract Image

使用可分离基函数分解虚时费曼图:安德森杂质模型强耦合展开
我们提出了一种高效评估虚时图的确定性算法,它基于最近引入的虚时格林函数的离散莱曼表示法(DLR)。除了其近似特性带来的图积分的高效离散化之外,DLR 基在虚时是可分离的,这使我们能够将图分解为一维乘积和卷积的嵌套序列的线性组合。我们重点研究了广义安德森杂质模型的强耦合粗线扩展,结果表明我们的策略降低了在反温度 β 和谱宽ωmax 条件下评估 Mth 阶图的计算复杂度,从直接正交的 O((βωmax)2M-1) 降至 O(M(log(βωmax))M+1),而且高阶精度可控。我们针对具有非对角杂化和自旋轨道耦合的多带杂质问题,使用三阶展开对我们的算法进行了基准测试,并与精确对角化和量子蒙特卡罗方法进行了比较。特别是,我们对代表 Ca2RuO4 最小模型的具有强自旋轨道耦合的三带哈伯德模型进行了自洽的动态均场理论计算,证明了该方法在模拟现实的强相关多带材料方面的前景。对于可以列举图表的低阶和中阶强耦合和弱耦合展开,我们的方法提供了一种高效、直接和稳健的黑盒评估程序。从这个意义上说,它填补了最低阶图解近似与基于蒙特卡洛高阶图解采样的图解近似之间的空白,最低阶图解近似简单、成本低廉,但不准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信