Device-independent lower bounds on the conditional von Neumann entropy

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2024-08-27 DOI:10.22331/q-2024-08-27-1445
Peter Brown, Hamza Fawzi, Omar Fawzi
{"title":"Device-independent lower bounds on the conditional von Neumann entropy","authors":"Peter Brown, Hamza Fawzi, Omar Fawzi","doi":"10.22331/q-2024-08-27-1445","DOIUrl":null,"url":null,"abstract":"The rates of several device-independent (DI) protocols, including quantum key-distribution (QKD) and randomness expansion (RE), can be computed via an optimization of the conditional von Neumann entropy over a particular class of quantum states. In this work we introduce a numerical method to compute lower bounds on such rates. We derive a sequence of optimization problems that converge to the conditional von Neumann entropy of systems defined on general separable Hilbert spaces. Using the Navascués-Pironio-Acín hierarchy we can then relax these problems to semidefinite programs, giving a computationally tractable method to compute lower bounds on the rates of DI protocols. Applying our method to compute the rates of DI-RE and DI-QKD protocols we find substantial improvements over all previous numerical techniques, demonstrating significantly higher rates for both DI-RE and DI-QKD. In particular, for DI-QKD we show a minimal detection efficiency threshold which is within the realm of current capabilities. Moreover, we demonstrate that our method is capable of converging rapidly by recovering all known tight analytical bounds up to several decimal places. Finally, we note that our method is compatible with the entropy accumulation theorem and can thus be used to compute rates of finite round protocols and subsequently prove their security.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"5 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-08-27-1445","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rates of several device-independent (DI) protocols, including quantum key-distribution (QKD) and randomness expansion (RE), can be computed via an optimization of the conditional von Neumann entropy over a particular class of quantum states. In this work we introduce a numerical method to compute lower bounds on such rates. We derive a sequence of optimization problems that converge to the conditional von Neumann entropy of systems defined on general separable Hilbert spaces. Using the Navascués-Pironio-Acín hierarchy we can then relax these problems to semidefinite programs, giving a computationally tractable method to compute lower bounds on the rates of DI protocols. Applying our method to compute the rates of DI-RE and DI-QKD protocols we find substantial improvements over all previous numerical techniques, demonstrating significantly higher rates for both DI-RE and DI-QKD. In particular, for DI-QKD we show a minimal detection efficiency threshold which is within the realm of current capabilities. Moreover, we demonstrate that our method is capable of converging rapidly by recovering all known tight analytical bounds up to several decimal places. Finally, we note that our method is compatible with the entropy accumulation theorem and can thus be used to compute rates of finite round protocols and subsequently prove their security.
与设备无关的条件冯-诺依曼熵下限
包括量子密钥分发(QKD)和随机性扩展(RE)在内的几种独立于设备(DI)协议的速率可以通过对特定量子态类别的条件冯-诺依曼熵进行优化来计算。在这项工作中,我们介绍了一种计算此类速率下限的数值方法。我们推导了一系列优化问题,这些问题收敛于定义在一般可分离希尔伯特空间上的系统的条件冯-诺依曼熵。利用 Navascués-Pironio-Acín层次结构,我们可以将这些问题放松为半有限程序,从而给出一种计算简便的方法来计算 DI 协议的速率下限。应用我们的方法计算 DI-RE 和 DI-QKD 协议的速率,我们发现比以前所有的数值技术都有了很大改进,DI-RE 和 DI-QKD 的速率都显著提高。特别是,对于 DI-QKD,我们展示了一个最小检测效率阈值,该阈值在当前能力范围内。此外,我们还证明了我们的方法能够快速收敛,恢复了所有已知的严格分析界限,精确到小数点后几位。最后,我们指出,我们的方法与熵累积定理兼容,因此可用于计算有限回合协议的速率,并随后证明其安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信