{"title":"Massive Dirac equation in static Bumblebee black hole space-times, detailed derivations and novel exact solutions","authors":"David Senjaya","doi":"10.1016/j.jheap.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we construct and investigate the relativistic spin-<span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> fermionic fields quantum dynamics in static spherically symmetric Bumblebee black hole background. The derivation of the Dirac equation in a general static spherically symmetric black hole space-time is carried out in detail via tetrad formalism. With the help of total angular momentum operator, the angular equation can be separated from the radial part where the solution is given in terms of the spinor harmonics. The radial Dirac equation has a well-known problem due to the presence of the square root terms appearing simultaneously with the rest mass that prevents us to find exact solutions. In this work, we present exact solutions of light mass fermion's wave function and energy levels bound in the static Bumblebee black hole. We discover the exact solutions of the massive Dirac's radial equation in terms of the Confluent Heun functions. Moreover, thanks to the well-known polynomial condition of the Confluent Heun functions, we also derive the energy quantization.</p></div>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404824000727","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we construct and investigate the relativistic spin- fermionic fields quantum dynamics in static spherically symmetric Bumblebee black hole background. The derivation of the Dirac equation in a general static spherically symmetric black hole space-time is carried out in detail via tetrad formalism. With the help of total angular momentum operator, the angular equation can be separated from the radial part where the solution is given in terms of the spinor harmonics. The radial Dirac equation has a well-known problem due to the presence of the square root terms appearing simultaneously with the rest mass that prevents us to find exact solutions. In this work, we present exact solutions of light mass fermion's wave function and energy levels bound in the static Bumblebee black hole. We discover the exact solutions of the massive Dirac's radial equation in terms of the Confluent Heun functions. Moreover, thanks to the well-known polynomial condition of the Confluent Heun functions, we also derive the energy quantization.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.