Strong convergence of a class of adaptive numerical methods for SDEs with jumps

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Cónall Kelly , Gabriel J. Lord , Fandi Sun
{"title":"Strong convergence of a class of adaptive numerical methods for SDEs with jumps","authors":"Cónall Kelly ,&nbsp;Gabriel J. Lord ,&nbsp;Fandi Sun","doi":"10.1016/j.matcom.2024.08.020","DOIUrl":null,"url":null,"abstract":"<div><p>We develop adaptive time-stepping strategies for Itô-type stochastic differential equations (SDEs) with jump perturbations. Our approach builds on adaptive strategies for SDEs.</p><p>Adaptive methods can ensure strong convergence of nonlinear SDEs with drift and diffusion coefficients that violate global Lipschitz bounds by adjusting the stepsize dynamically on each trajectory to prevent spurious growth that can lead to loss of convergence if it occurs with sufficiently high probability.</p><p>In this article, we demonstrate the use of a jump-adapted mesh that incorporates jump times into the adaptive time-stepping strategy. We prove that any adaptive scheme satisfying a particular mean-square consistency bound for a nonlinear SDE in the non-jump case may be extended to a strongly convergent scheme in the Poisson jump case, where the jump and diffusion perturbations are mutually independent, and the jump coefficient satisfies a global Lipschitz condition.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378475424003227/pdfft?md5=7dddf25047fdd3399cc3a6db60ec7de1&pid=1-s2.0-S0378475424003227-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003227","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We develop adaptive time-stepping strategies for Itô-type stochastic differential equations (SDEs) with jump perturbations. Our approach builds on adaptive strategies for SDEs.

Adaptive methods can ensure strong convergence of nonlinear SDEs with drift and diffusion coefficients that violate global Lipschitz bounds by adjusting the stepsize dynamically on each trajectory to prevent spurious growth that can lead to loss of convergence if it occurs with sufficiently high probability.

In this article, we demonstrate the use of a jump-adapted mesh that incorporates jump times into the adaptive time-stepping strategy. We prove that any adaptive scheme satisfying a particular mean-square consistency bound for a nonlinear SDE in the non-jump case may be extended to a strongly convergent scheme in the Poisson jump case, where the jump and diffusion perturbations are mutually independent, and the jump coefficient satisfies a global Lipschitz condition.

有跳跃的 SDE 的一类自适应数值方法的强收敛性
我们针对具有跳跃扰动的 Itô 型随机微分方程 (SDE) 开发了自适应时间步进策略。我们的方法建立在 SDE 自适应策略的基础上。自适应方法可以确保具有漂移和扩散系数的非线性 SDE 的强收敛性,这些非线性 SDE 违反了全局 Lipschitz 边界,方法是在每个轨迹上动态调整步长,以防止虚假增长,如果虚假增长发生的概率足够高,就会导致收敛性丧失。我们证明,在非跳跃情况下,任何满足非线性 SDE 特定均方一致性约束的自适应方案都可以扩展到泊松跳跃情况下的强收敛方案,在泊松跳跃情况下,跳跃和扩散扰动相互独立,跳跃系数满足全局 Lipschitz 条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信