Lili Zhang , Yu Hong , Jiapeng Lu , Yi Wang , Wei Luo
{"title":"Semi-rational engineering of ω-transaminase for enhanced enzymatic activity to 2-ketobutyrate","authors":"Lili Zhang , Yu Hong , Jiapeng Lu , Yi Wang , Wei Luo","doi":"10.1016/j.enzmictec.2024.110505","DOIUrl":null,"url":null,"abstract":"<div><p>Transaminases (EC 2.6.1.X, TAs) are important biocatalysts in the synthesis of chiral amines, and have significant value in the field of medicine. However, TAs suffer from low enzyme activity and poor catalytic efficiency in the synthesis of chiral amines or non-natural amino acids, which hinders their industrial applications. In this study, a novel TA derived from <em>Paracoccus pantotrophus</em> (<em>pp</em>TA) that was investigated in our previous study was employed with a semi-rational design strategy to improve its enzyme activity to 2-ketobutyrate. By using homology modeling and molecular docking, four surrounding sites in the substrate-binding S pocket were selected as potential mutational sites. Through alanine scanning and saturation mutagenesis, the optimal mutant V153A with significantly improved enzyme activity was finally obtained, which was 578 % higher than that of the wild-type <em>pp</em>TA (WT). Furthermore, the mutant enzyme <em>pp</em>TA-V153A also exhibited slightly improved temperature and pH stability compared to WT. Subsequently, the mutant was used to convert 2-ketobutyrate for the preparation of L-2-aminobutyric acid (L-ABA). The mutant can tolerate 300 mM 2-ketobutyrate with a conversion rate of 74 %, which lays a solid foundation for the preparation of chiral amines.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"180 ","pages":"Article 110505"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022924001121","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transaminases (EC 2.6.1.X, TAs) are important biocatalysts in the synthesis of chiral amines, and have significant value in the field of medicine. However, TAs suffer from low enzyme activity and poor catalytic efficiency in the synthesis of chiral amines or non-natural amino acids, which hinders their industrial applications. In this study, a novel TA derived from Paracoccus pantotrophus (ppTA) that was investigated in our previous study was employed with a semi-rational design strategy to improve its enzyme activity to 2-ketobutyrate. By using homology modeling and molecular docking, four surrounding sites in the substrate-binding S pocket were selected as potential mutational sites. Through alanine scanning and saturation mutagenesis, the optimal mutant V153A with significantly improved enzyme activity was finally obtained, which was 578 % higher than that of the wild-type ppTA (WT). Furthermore, the mutant enzyme ppTA-V153A also exhibited slightly improved temperature and pH stability compared to WT. Subsequently, the mutant was used to convert 2-ketobutyrate for the preparation of L-2-aminobutyric acid (L-ABA). The mutant can tolerate 300 mM 2-ketobutyrate with a conversion rate of 74 %, which lays a solid foundation for the preparation of chiral amines.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.