Decorated of silver nanoparticles over Arabic gum modified magnetic nanoparticles: Evaluation of its antioxidant and its therapeutic effects on cervical cancer
IF 6.7 3区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Decorated of silver nanoparticles over Arabic gum modified magnetic nanoparticles: Evaluation of its antioxidant and its therapeutic effects on cervical cancer","authors":"Yi Li , Nan Gao","doi":"10.1016/j.jsamd.2024.100774","DOIUrl":null,"url":null,"abstract":"<div><p>In the current work, we report the bio-inspired formulation of silver NPs fabricated over Arabic gum (AG) functionalized magnetic nanocomposite (Fe<sub>3</sub>O<sub>4</sub>@AG/Ag NPs) for the treatment of cervical cancer. In the stepwise modification approach, the pre-synthesized Fe<sub>3</sub>O<sub>4</sub> NPs were encapsulated by the Arabic gum polar organomolecules, followed by the decoration of in-situ green synthesized silver NPs over the composite. The final bio-material was characterized by various analytical techniques such as XRD, EDX, ICP-OES, TEM, FE-SEM, and FT-IR. The FE-SEM findings validate the spherical shape of the Fe<sub>3</sub>O<sub>4</sub>@AG/Ag NPs, which range in size from 20 to 35 nm. An assessment was conducted on the characteristics of Fe<sub>3</sub>O<sub>4</sub>@AG/Ag NPs in relation to prevalent human cervical cancer cells. The DPPH free radical antioxidant assay demonstrates the notable antioxidant characteristics of Fe3O4@AG/Ag NPs. The Fe<sub>3</sub>O<sub>4</sub>@AG/Ag NPs exhibited IC<sub>50</sub> values of 115, 90, 119, and 80 when tested against SiHa, C-33 A, Ca Ski, and LM-MEL-41 cells, respectively. The anti-human cervical cancer effect of Fe<sub>3</sub>O<sub>4</sub>@AG/Ag NPs appears to be a result of their antioxidant properties. According to the findings mentioned above, there is a potential for the newly created Fe<sub>3</sub>O<sub>4</sub>@AG/Ag NPs to be utilized as an innovative chemotherapeutic treatment or supplement for managing cervical cancer after the conclusion of clinical trials with human participants.</p></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"9 4","pages":"Article 100774"},"PeriodicalIF":6.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468217924001059/pdfft?md5=4a36211f24fa7b79f42ba92c6f4b5798&pid=1-s2.0-S2468217924001059-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924001059","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the current work, we report the bio-inspired formulation of silver NPs fabricated over Arabic gum (AG) functionalized magnetic nanocomposite (Fe3O4@AG/Ag NPs) for the treatment of cervical cancer. In the stepwise modification approach, the pre-synthesized Fe3O4 NPs were encapsulated by the Arabic gum polar organomolecules, followed by the decoration of in-situ green synthesized silver NPs over the composite. The final bio-material was characterized by various analytical techniques such as XRD, EDX, ICP-OES, TEM, FE-SEM, and FT-IR. The FE-SEM findings validate the spherical shape of the Fe3O4@AG/Ag NPs, which range in size from 20 to 35 nm. An assessment was conducted on the characteristics of Fe3O4@AG/Ag NPs in relation to prevalent human cervical cancer cells. The DPPH free radical antioxidant assay demonstrates the notable antioxidant characteristics of Fe3O4@AG/Ag NPs. The Fe3O4@AG/Ag NPs exhibited IC50 values of 115, 90, 119, and 80 when tested against SiHa, C-33 A, Ca Ski, and LM-MEL-41 cells, respectively. The anti-human cervical cancer effect of Fe3O4@AG/Ag NPs appears to be a result of their antioxidant properties. According to the findings mentioned above, there is a potential for the newly created Fe3O4@AG/Ag NPs to be utilized as an innovative chemotherapeutic treatment or supplement for managing cervical cancer after the conclusion of clinical trials with human participants.
期刊介绍:
In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research.
Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science.
With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.