A general framework for multi-step ahead adaptive conformal heteroscedastic time series forecasting

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"A general framework for multi-step ahead adaptive conformal heteroscedastic time series forecasting","authors":"","doi":"10.1016/j.neucom.2024.128434","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a novel model-agnostic algorithm called adaptive ensemble batch multi-input multi-output conformalized quantile regression (<span>AEnbMIMOCQR</span>) that enables forecasters to generate multi-step ahead prediction intervals for a fixed pre-specified miscoverage rate <span><math><mi>α</mi></math></span> in a distribution-free manner. Our method is grounded on conformal prediction principles, however, it does not require data splitting and provides close to exact coverage even when the data is not exchangeable. Moreover, the resulting prediction intervals, besides being empirically valid along the forecast horizon, do not neglect heteroscedasticity. <span>AEnbMIMOCQR</span> is designed to be robust to distribution shifts, which means that its prediction intervals remain reliable over an unlimited period of time, without entailing retraining or imposing unrealistic strict assumptions on the data-generating process. Through methodically experimentation, we demonstrate that our approach outperforms other competitive methods on both real-world and synthetic datasets. The code used in the experimental part and a tutorial on how to use <span>AEnbMIMOCQR</span> can be found at the following GitHub repository: <span><span>https://github.com/Quilograma/AEnbMIMOCQR</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925231224012050/pdfft?md5=2f884ccf3a69148127232428fbf2042a&pid=1-s2.0-S0925231224012050-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224012050","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel model-agnostic algorithm called adaptive ensemble batch multi-input multi-output conformalized quantile regression (AEnbMIMOCQR) that enables forecasters to generate multi-step ahead prediction intervals for a fixed pre-specified miscoverage rate α in a distribution-free manner. Our method is grounded on conformal prediction principles, however, it does not require data splitting and provides close to exact coverage even when the data is not exchangeable. Moreover, the resulting prediction intervals, besides being empirically valid along the forecast horizon, do not neglect heteroscedasticity. AEnbMIMOCQR is designed to be robust to distribution shifts, which means that its prediction intervals remain reliable over an unlimited period of time, without entailing retraining or imposing unrealistic strict assumptions on the data-generating process. Through methodically experimentation, we demonstrate that our approach outperforms other competitive methods on both real-world and synthetic datasets. The code used in the experimental part and a tutorial on how to use AEnbMIMOCQR can be found at the following GitHub repository: https://github.com/Quilograma/AEnbMIMOCQR.

多步超前自适应保形异速时间序列预测的一般框架
本文介绍了一种称为自适应集合批量多输入多输出保形量化回归(AEnbMIMOCQR)的新型模型无关算法,它能让预测人员以一种无分布的方式为固定的预设误覆盖率α生成多步超前预测区间。我们的方法以保形预测原理为基础,但不需要数据分割,即使在数据不可交换的情况下,也能提供接近精确的覆盖率。此外,由此得出的预测区间除了在预测范围内经验上有效外,还不会忽略异方差性。AEnbMIMOCQR 的设计对分布变化具有鲁棒性,这意味着它的预测区间在无限长的时间内都能保持可靠,而无需重新训练或对数据生成过程施加不切实际的严格假设。通过有条不紊的实验,我们证明了我们的方法在现实世界和合成数据集上都优于其他竞争方法。实验部分使用的代码以及如何使用 AEnbMIMOCQR 的教程可在以下 GitHub 代码库中找到:https://github.com/Quilograma/AEnbMIMOCQR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信