A positive/tropical critical point theorem and mirror symmetry

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jamie Judd, Konstanze Rietsch
{"title":"A positive/tropical critical point theorem and mirror symmetry","authors":"Jamie Judd,&nbsp;Konstanze Rietsch","doi":"10.1016/j.aim.2024.109911","DOIUrl":null,"url":null,"abstract":"<div><p>Call a Laurent polynomial <em>W</em> ‘complete’ if its Newton polytope is full-dimensional with zero in its interior. Suppose <em>W</em> is a Laurent polynomial with coefficients in the positive part of the field of (generalised) Puiseaux series. Here a Puiseaux or generalised Puiseux series (with exponents in <span><math><mi>R</mi></math></span>) is called ‘positive’ if the coefficient of its leading term is in <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>&gt;</mo><mn>0</mn></mrow></msub></math></span>. We show that <em>W</em> has a unique <em>positive</em> critical point <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>crit</mi></mrow></msub></math></span>, i.e. all of whose coordinates are positive, if and only if <em>W</em> is complete. For any complete, positive Laurent polynomial <em>W</em> in <em>r</em> variables we also obtain from its positive critical point <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>crit</mi></mrow></msub></math></span> a canonically associated ‘tropical critical point’ <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>crit</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> by considering the valuations of the coordinates of <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>crit</mi></mrow></msub></math></span>. Moreover we give a finite recursive construction of <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>crit</mi></mrow></msub></math></span> in terms of a generalisation of the Newton polytope that we call the ‘Newton datum’ of <em>W</em>.</p><p>We show that this result is compatible with a general form of mutation, so that it can be applied in a cluster varieties setting. We also show that our theorem carries over to the case where the exponents of monomials appearing in <em>W</em> are not integral but in <span><math><mi>R</mi></math></span>, even though <em>W</em> is then no longer Laurent.</p><p>Finally, we describe applications to both algebraic and symplectic toric geometry inspired by mirror symmetry. On the one hand, in the algebraic context of a complete toric variety <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>Σ</mi></mrow></msub></math></span> we apply our results to obtain for any divisor class <span><math><mo>[</mo><mi>D</mi><mo>]</mo></math></span> satisfying a certain integrality property, a canonical choice of torus-invariant representative. This generalises the standard toric boundary divisor of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>Σ</mi></mrow></msub></math></span> to divisor classes other than the anti-canonical class. On the other hand, our result generalises a result of <span><span>[11]</span></span> and relates to the construction of canonical non-displaceable Lagrangian tori for toric symplectic orbifolds using <span><span>[13]</span></span>, <span><span>[37]</span></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001870824004262/pdfft?md5=00f569597dee36082263eecfeccf51e9&pid=1-s2.0-S0001870824004262-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004262","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Call a Laurent polynomial W ‘complete’ if its Newton polytope is full-dimensional with zero in its interior. Suppose W is a Laurent polynomial with coefficients in the positive part of the field of (generalised) Puiseaux series. Here a Puiseaux or generalised Puiseux series (with exponents in R) is called ‘positive’ if the coefficient of its leading term is in R>0. We show that W has a unique positive critical point pcrit, i.e. all of whose coordinates are positive, if and only if W is complete. For any complete, positive Laurent polynomial W in r variables we also obtain from its positive critical point pcrit a canonically associated ‘tropical critical point’ dcritRr by considering the valuations of the coordinates of pcrit. Moreover we give a finite recursive construction of dcrit in terms of a generalisation of the Newton polytope that we call the ‘Newton datum’ of W.

We show that this result is compatible with a general form of mutation, so that it can be applied in a cluster varieties setting. We also show that our theorem carries over to the case where the exponents of monomials appearing in W are not integral but in R, even though W is then no longer Laurent.

Finally, we describe applications to both algebraic and symplectic toric geometry inspired by mirror symmetry. On the one hand, in the algebraic context of a complete toric variety XΣ we apply our results to obtain for any divisor class [D] satisfying a certain integrality property, a canonical choice of torus-invariant representative. This generalises the standard toric boundary divisor of XΣ to divisor classes other than the anti-canonical class. On the other hand, our result generalises a result of [11] and relates to the construction of canonical non-displaceable Lagrangian tori for toric symplectic orbifolds using [13], [37].

正/热带临界点定理和镜像对称性
如果一个劳伦多项式 W 的牛顿多面体是全维的,且其内部为零,则称该多项式为 "完全多项式"。假设 W 是一个洛伦多项式,其系数在(广义)普伊索数列域的正部分。在这里,如果一个普伊索数列或广义普伊索数列(指数在 R 中)的前导项系数在 R>0 中,那么这个数列就被称为 "正数列"。我们证明,当且仅当 W 是完备的时候,W 有一个唯一的正临界点 pcrit,即其坐标全部为正。对于任何在 r 变量中的完整、正的劳伦多项式 W,我们还可以通过考虑 pcrit 坐标的估值,从其正临界点 pcrit 得到一个规范关联的 "热带临界点 "dcrit∈Rr。此外,我们根据牛顿多面体的一般化给出了 dcrit 的有限递归构造,我们称其为 W 的 "牛顿基准"。我们证明了这一结果与一般形式的突变是兼容的,因此它可以应用于群集品种设置中。我们还证明,我们的定理适用于 W 中出现的单项式的指数不是积分而是 R 的情况,尽管此时 W 不再是劳伦的。最后,我们描述了受镜像对称性启发,在代数和交映环几何中的应用。一方面,在完全环综 XΣ 的代数背景下,我们应用我们的结果,得到了满足一定积分性质的任何除数类 [D],以及环综不变代表的典型选择。这就把 XΣ 的标准环边界除法推广到了反规范类以外的除法类。另一方面,我们的结果概括了[11]的一个结果,并与利用[13]、[37]为环形交点轨道构造典型不可位移拉格朗日转矩有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信