Comparison of Machine Learning Detection of Low Left Ventricular Ejection Fraction Using Individual ECG Leads.

Computing in cardiology Pub Date : 2023-10-01 Epub Date: 2023-12-26 DOI:10.22489/cinc.2023.047
Jake A Bergquist, Brian Zenger, James Brundage, Rob S MacLeod, Rashmee Shah, Xiangyang Ye, Ann Lyones, Ravi Ranjan, Tolga Tasdizen, T Jared Bunch, Benjamin A Steinberg
{"title":"Comparison of Machine Learning Detection of Low Left Ventricular Ejection Fraction Using Individual ECG Leads.","authors":"Jake A Bergquist, Brian Zenger, James Brundage, Rob S MacLeod, Rashmee Shah, Xiangyang Ye, Ann Lyones, Ravi Ranjan, Tolga Tasdizen, T Jared Bunch, Benjamin A Steinberg","doi":"10.22489/cinc.2023.047","DOIUrl":null,"url":null,"abstract":"<p><p>The 12-lead electrocardiogram (ECG) is the most common front-line diagnosis tool for assessing cardiovascular health, yet traditional ECG analysis cannot detect many diseases. Machine learning (ML) techniques have emerged as a powerful set of techniques for producing automated and robust ECG analysis tools that can often predict diseases and conditions not detectable by traditional ECG analysis. Many contemporary ECG-ML studies have focused on utilizing the full 12-lead ECG; however, with the increased availability of single-lead ECG data from wearable devices, there is a clear motivation to explore the development of single-lead ECG-ML techniques. In this study we developed and applied a deep learning architecture for the detection of low left ventricular ejection fraction (LVEF), and compared the performance of this architecture when it was trained with individual leads of the 12-lead ECG to the performance when trained using the entire 12-lead ECG. We observed that single-lead-trained networks performed similarly to the full 12-lead-trained network. We also noted patterns of agreement and disagreement between network low LVEF predictions across the different lead-trained networks.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":"50 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349306/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/cinc.2023.047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The 12-lead electrocardiogram (ECG) is the most common front-line diagnosis tool for assessing cardiovascular health, yet traditional ECG analysis cannot detect many diseases. Machine learning (ML) techniques have emerged as a powerful set of techniques for producing automated and robust ECG analysis tools that can often predict diseases and conditions not detectable by traditional ECG analysis. Many contemporary ECG-ML studies have focused on utilizing the full 12-lead ECG; however, with the increased availability of single-lead ECG data from wearable devices, there is a clear motivation to explore the development of single-lead ECG-ML techniques. In this study we developed and applied a deep learning architecture for the detection of low left ventricular ejection fraction (LVEF), and compared the performance of this architecture when it was trained with individual leads of the 12-lead ECG to the performance when trained using the entire 12-lead ECG. We observed that single-lead-trained networks performed similarly to the full 12-lead-trained network. We also noted patterns of agreement and disagreement between network low LVEF predictions across the different lead-trained networks.

使用单个心电图导联对低左室射血分数进行机器学习检测的比较。
12 导联心电图(ECG)是评估心血管健康状况最常用的一线诊断工具,但传统的心电图分析无法检测出许多疾病。机器学习(ML)技术已成为一套强大的技术,可用于制作自动、稳健的心电图分析工具,通常可预测传统心电图分析无法检测到的疾病和病症。当代的许多心电图机器学习研究都侧重于利用完整的 12 导联心电图;然而,随着可穿戴设备提供的单导联心电图数据越来越多,探索开发单导联心电图机器学习技术的动机显而易见。在这项研究中,我们开发并应用了一种用于检测左心室射血分数(LVEF)偏低的深度学习架构,并比较了该架构在使用 12 导联心电图的单导联进行训练时的性能与使用整个 12 导联心电图进行训练时的性能。我们发现,单导联训练的网络与完整的 12 导联训练的网络表现相似。我们还注意到不同导联训练的网络对低 LVEF 预测的一致和不一致模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信