Juan Rodriguez Paez, Ruth E White, Kaitlyn Dunn, Lasya Gopagani, Si Pham, Darshan Pahinkar, Venkat Keshav Chivukula
{"title":"Investigating Cardiac Temperature During Heart Transplantation Using the Static Cold Storage Paradigm.","authors":"Juan Rodriguez Paez, Ruth E White, Kaitlyn Dunn, Lasya Gopagani, Si Pham, Darshan Pahinkar, Venkat Keshav Chivukula","doi":"10.1097/TP.0000000000005185","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Static cold storage is a mainstay of the heart transplantation (HTx) process. However, the temperature distribution within the organ at each stage of HTx is unknown. In this study, we aimed to quantify how long it took for the heart to warm up and cool down and the nature of temperature distribution with the organ at each stage of HTx.</p><p><strong>Methods: </strong>We used high-fidelity computational time-varying biothermal modeling on an anatomical human heart model to model the HTx process in 5 interdependent stages, including cardioplegia, back-table preparation, static cold storage ice box storage and transport, back-table preparation at the recipient institution and warm-up within the recipient body before cross-clamp release.</p><p><strong>Results: </strong>Results indicate that the heart experiences roller-coaster-like temperature changes in stage, including rapid cool down from body temperature to <10 °C within 15 min in stage 1 with a maximum cooling rate of 5 °C/min. This was followed by cooling and extended duration of temperatures <2 °C in the ice box and rapid warming up to body temperature within 10 min at rates of 2 °C/min and 4 °C/min for the left and right sides, respectively, during implantation. Temperature distribution throughout the heart was heterogeneous, with right-sided temperature change occurring nearly 2× faster than on the left side.</p><p><strong>Conclusions: </strong>We present, for the first time, detailed temperature distributions and evolution at each stage of HTx. Quantification of the rapid and heterogeneous temperature changes is crucial to optimize HTx and improve organ viability.</p>","PeriodicalId":23316,"journal":{"name":"Transplantation","volume":" ","pages":"e148-e156"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/TP.0000000000005185","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Static cold storage is a mainstay of the heart transplantation (HTx) process. However, the temperature distribution within the organ at each stage of HTx is unknown. In this study, we aimed to quantify how long it took for the heart to warm up and cool down and the nature of temperature distribution with the organ at each stage of HTx.
Methods: We used high-fidelity computational time-varying biothermal modeling on an anatomical human heart model to model the HTx process in 5 interdependent stages, including cardioplegia, back-table preparation, static cold storage ice box storage and transport, back-table preparation at the recipient institution and warm-up within the recipient body before cross-clamp release.
Results: Results indicate that the heart experiences roller-coaster-like temperature changes in stage, including rapid cool down from body temperature to <10 °C within 15 min in stage 1 with a maximum cooling rate of 5 °C/min. This was followed by cooling and extended duration of temperatures <2 °C in the ice box and rapid warming up to body temperature within 10 min at rates of 2 °C/min and 4 °C/min for the left and right sides, respectively, during implantation. Temperature distribution throughout the heart was heterogeneous, with right-sided temperature change occurring nearly 2× faster than on the left side.
Conclusions: We present, for the first time, detailed temperature distributions and evolution at each stage of HTx. Quantification of the rapid and heterogeneous temperature changes is crucial to optimize HTx and improve organ viability.
期刊介绍:
The official journal of The Transplantation Society, and the International Liver Transplantation Society, Transplantation is published monthly and is the most cited and influential journal in the field, with more than 25,000 citations per year.
Transplantation has been the trusted source for extensive and timely coverage of the most important advances in transplantation for over 50 years. The Editors and Editorial Board are an international group of research and clinical leaders that includes many pioneers of the field, representing a diverse range of areas of expertise. This capable editorial team provides thoughtful and thorough peer review, and delivers rapid, careful and insightful editorial evaluation of all manuscripts submitted to the journal.
Transplantation is committed to rapid review and publication. The journal remains competitive with a time to first decision of fewer than 21 days. Transplantation was the first in the field to offer CME credit to its peer reviewers for reviews completed.
The journal publishes original research articles in original clinical science and original basic science. Short reports bring attention to research at the forefront of the field. Other areas covered include cell therapy and islet transplantation, immunobiology and genomics, and xenotransplantation.