Zhengyang Zhou, Dateng Li, David Huh, Minge Xie, Eun-Young Mun
{"title":"A simulation study of the performance of statistical models for count outcomes with excessive zeros.","authors":"Zhengyang Zhou, Dateng Li, David Huh, Minge Xie, Eun-Young Mun","doi":"10.1002/sim.10198","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Outcome measures that are count variables with excessive zeros are common in health behaviors research. Examples include the number of standard drinks consumed or alcohol-related problems experienced over time. There is a lack of empirical data about the relative performance of prevailing statistical models for assessing the efficacy of interventions when outcomes are zero-inflated, particularly compared with recently developed marginalized count regression approaches for such data.</p><p><strong>Methods: </strong>The current simulation study examined five commonly used approaches for analyzing count outcomes, including two linear models (with outcomes on raw and log-transformed scales, respectively) and three prevailing count distribution-based models (ie, Poisson, negative binomial, and zero-inflated Poisson (ZIP) models). We also considered the marginalized zero-inflated Poisson (MZIP) model, a novel alternative that estimates the overall effects on the population mean while adjusting for zero-inflation. Motivated by alcohol misuse prevention trials, extensive simulations were conducted to evaluate and compare the statistical power and Type I error rate of the statistical models and approaches across data conditions that varied in sample size ( <math> <semantics><mrow><mi>N</mi> <mo>=</mo> <mn>100</mn></mrow> <annotation>$$ N=100 $$</annotation></semantics> </math> to 500), zero rate (0.2 to 0.8), and intervention effect sizes.</p><p><strong>Results: </strong>Under zero-inflation, the Poisson model failed to control the Type I error rate, resulting in higher than expected false positive results. When the intervention effects on the zero (vs. non-zero) and count parts were in the same direction, the MZIP model had the highest statistical power, followed by the linear model with outcomes on the raw scale, negative binomial model, and ZIP model. The performance of the linear model with a log-transformed outcome variable was unsatisfactory.</p><p><strong>Conclusions: </strong>The MZIP model demonstrated better statistical properties in detecting true intervention effects and controlling false positive results for zero-inflated count outcomes. This MZIP model may serve as an appealing analytical approach to evaluating overall intervention effects in studies with count outcomes marked by excessive zeros.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":"4752-4767"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483204/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10198","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Outcome measures that are count variables with excessive zeros are common in health behaviors research. Examples include the number of standard drinks consumed or alcohol-related problems experienced over time. There is a lack of empirical data about the relative performance of prevailing statistical models for assessing the efficacy of interventions when outcomes are zero-inflated, particularly compared with recently developed marginalized count regression approaches for such data.
Methods: The current simulation study examined five commonly used approaches for analyzing count outcomes, including two linear models (with outcomes on raw and log-transformed scales, respectively) and three prevailing count distribution-based models (ie, Poisson, negative binomial, and zero-inflated Poisson (ZIP) models). We also considered the marginalized zero-inflated Poisson (MZIP) model, a novel alternative that estimates the overall effects on the population mean while adjusting for zero-inflation. Motivated by alcohol misuse prevention trials, extensive simulations were conducted to evaluate and compare the statistical power and Type I error rate of the statistical models and approaches across data conditions that varied in sample size ( to 500), zero rate (0.2 to 0.8), and intervention effect sizes.
Results: Under zero-inflation, the Poisson model failed to control the Type I error rate, resulting in higher than expected false positive results. When the intervention effects on the zero (vs. non-zero) and count parts were in the same direction, the MZIP model had the highest statistical power, followed by the linear model with outcomes on the raw scale, negative binomial model, and ZIP model. The performance of the linear model with a log-transformed outcome variable was unsatisfactory.
Conclusions: The MZIP model demonstrated better statistical properties in detecting true intervention effects and controlling false positive results for zero-inflated count outcomes. This MZIP model may serve as an appealing analytical approach to evaluating overall intervention effects in studies with count outcomes marked by excessive zeros.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.