{"title":"Artificial Intelligence as a Replacement for Animal Experiments in Neurology: Potential, Progress, and Challenges.","authors":"Thorsten Rudroff","doi":"10.3390/neurolint16040060","DOIUrl":null,"url":null,"abstract":"<p><p>Animal experimentation has long been a cornerstone of neurology research, but it faces growing scientific, ethical, and economic challenges. Advances in artificial intelligence (AI) are providing new opportunities to replace animal testing with more human-relevant and efficient methods. This article explores the potential of AI technologies such as brain organoids, computational models, and machine learning to revolutionize neurology research and reduce reliance on animal models. These approaches can better recapitulate human brain physiology, predict drug responses, and uncover novel insights into neurological disorders. They also offer faster, cheaper, and more ethical alternatives to animal experiments. Case studies demonstrate AI's ability to accelerate drug discovery for Alzheimer's, predict neurotoxicity, personalize treatments for Parkinson's, and restore movement in paralysis. While challenges remain in validating and integrating these technologies, the scientific, economic, practical, and moral advantages are driving a paradigm shift towards AI-based, animal-free research in neurology. With continued investment and collaboration across sectors, AI promises to accelerate the development of safer and more effective therapies for neurological conditions while significantly reducing animal use. The path forward requires the ongoing development and validation of these technologies, but a future in which they largely replace animal experiments in neurology appears increasingly likely. This transition heralds a new era of more humane, human-relevant, and innovative brain research.</p>","PeriodicalId":19130,"journal":{"name":"Neurology International","volume":"16 4","pages":"805-820"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357221/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/neurolint16040060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Animal experimentation has long been a cornerstone of neurology research, but it faces growing scientific, ethical, and economic challenges. Advances in artificial intelligence (AI) are providing new opportunities to replace animal testing with more human-relevant and efficient methods. This article explores the potential of AI technologies such as brain organoids, computational models, and machine learning to revolutionize neurology research and reduce reliance on animal models. These approaches can better recapitulate human brain physiology, predict drug responses, and uncover novel insights into neurological disorders. They also offer faster, cheaper, and more ethical alternatives to animal experiments. Case studies demonstrate AI's ability to accelerate drug discovery for Alzheimer's, predict neurotoxicity, personalize treatments for Parkinson's, and restore movement in paralysis. While challenges remain in validating and integrating these technologies, the scientific, economic, practical, and moral advantages are driving a paradigm shift towards AI-based, animal-free research in neurology. With continued investment and collaboration across sectors, AI promises to accelerate the development of safer and more effective therapies for neurological conditions while significantly reducing animal use. The path forward requires the ongoing development and validation of these technologies, but a future in which they largely replace animal experiments in neurology appears increasingly likely. This transition heralds a new era of more humane, human-relevant, and innovative brain research.