Maren Laughlin, Richard McIndoe, Sean H Adams, Renee Araiza, Julio E Ayala, Lucy Kennedy, Louise Lanoue, Louise Lantier, James Macy, Eann Malabanan, Owen P McGuinness, Rachel Perry, Daniel Port, Nathan Qi, Carol F Elias, Gerald I Shulman, David H Wasserman, K C Kent Lloyd
{"title":"The mouse metabolic phenotyping center (MMPC) live consortium: an NIH resource for in vivo characterization of mouse models of diabetes and obesity.","authors":"Maren Laughlin, Richard McIndoe, Sean H Adams, Renee Araiza, Julio E Ayala, Lucy Kennedy, Louise Lanoue, Louise Lantier, James Macy, Eann Malabanan, Owen P McGuinness, Rachel Perry, Daniel Port, Nathan Qi, Carol F Elias, Gerald I Shulman, David H Wasserman, K C Kent Lloyd","doi":"10.1007/s00335-024-10067-y","DOIUrl":null,"url":null,"abstract":"<p><p>The Mouse Metabolic Phenotyping Center (MMPC)Live Program was established in 2023 by the National Institute for Diabetes, Digestive and Kidney Diseases (NIDDK) at the National Institutes of Health (NIH) to advance biomedical research by providing the scientific community with standardized, high quality phenotyping services for mouse models of diabetes and obesity. Emerging as the next iteration of the MMPC Program which served the biomedical research community for 20 years (2001-2021), MMPCLive is designed as an outwardly-facing consortium of service cores that collaborate to provide reduced-cost consultation and metabolic, physiologic, and behavioral phenotyping tests on live mice for U.S. biomedical researchers. Four MMPCLive Centers located at universities around the country perform complex and often unique procedures in vivo on a fee for service basis, typically on mice shipped from the client or directly from a repository or vendor. Current areas of expertise include energy balance and body composition, insulin action and secretion, whole body carbohydrate and lipid metabolism, cardiovascular and renal function, food intake and behavior, microbiome and xenometabolism, and metabolic pathway kinetics. Additionally, an opportunity arose to reduce barriers to access and expand the diversity of the biomedical research workforce by establishing the VIBRANT Program. Directed at researchers historically underrepresented in the biomedical sciences, VIBRANT-eligible investigators have access to testing services, travel and career development awards, expert advice and experimental design consultation, and short internships to learn test technologies. Data derived from experiments run by the Centers belongs to the researchers submitting mice for testing which can be made publicly available and accessible from the MMPCLive database following publication. In addition to services, MMPCLive staff provide expertise and advice to researchers, develop and refine test protocols, engage in outreach activities, publish scientific and technical papers, and conduct educational workshops and training sessions to aid researchers in unraveling the heterogeneity of diabetes and obesity.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":"485-496"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522164/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-024-10067-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Mouse Metabolic Phenotyping Center (MMPC)Live Program was established in 2023 by the National Institute for Diabetes, Digestive and Kidney Diseases (NIDDK) at the National Institutes of Health (NIH) to advance biomedical research by providing the scientific community with standardized, high quality phenotyping services for mouse models of diabetes and obesity. Emerging as the next iteration of the MMPC Program which served the biomedical research community for 20 years (2001-2021), MMPCLive is designed as an outwardly-facing consortium of service cores that collaborate to provide reduced-cost consultation and metabolic, physiologic, and behavioral phenotyping tests on live mice for U.S. biomedical researchers. Four MMPCLive Centers located at universities around the country perform complex and often unique procedures in vivo on a fee for service basis, typically on mice shipped from the client or directly from a repository or vendor. Current areas of expertise include energy balance and body composition, insulin action and secretion, whole body carbohydrate and lipid metabolism, cardiovascular and renal function, food intake and behavior, microbiome and xenometabolism, and metabolic pathway kinetics. Additionally, an opportunity arose to reduce barriers to access and expand the diversity of the biomedical research workforce by establishing the VIBRANT Program. Directed at researchers historically underrepresented in the biomedical sciences, VIBRANT-eligible investigators have access to testing services, travel and career development awards, expert advice and experimental design consultation, and short internships to learn test technologies. Data derived from experiments run by the Centers belongs to the researchers submitting mice for testing which can be made publicly available and accessible from the MMPCLive database following publication. In addition to services, MMPCLive staff provide expertise and advice to researchers, develop and refine test protocols, engage in outreach activities, publish scientific and technical papers, and conduct educational workshops and training sessions to aid researchers in unraveling the heterogeneity of diabetes and obesity.
期刊介绍:
Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.