K. S. Olsen, A. A. Fedorova, D. M. Kass, A. Kleinböhl, A. Trokhimovskiy, O. I. Korablev, F. Montmessin, F. Lefèvre, L. Baggio, J. Alday, D. A. Belyaev, J. A. Holmes, J. P. Mason, P. M. Streeter, K. Rajendran, M. R. Patel, A. Patrakeev, A. Shakun
{"title":"Relationships Between HCl, H2O, Aerosols, and Temperature in the Martian Atmosphere: 2. Quantitative Correlations","authors":"K. S. Olsen, A. A. Fedorova, D. M. Kass, A. Kleinböhl, A. Trokhimovskiy, O. I. Korablev, F. Montmessin, F. Lefèvre, L. Baggio, J. Alday, D. A. Belyaev, J. A. Holmes, J. P. Mason, P. M. Streeter, K. Rajendran, M. R. Patel, A. Patrakeev, A. Shakun","doi":"10.1029/2024JE008351","DOIUrl":null,"url":null,"abstract":"<p>The detection of hydrogen chloride (HCl) in the atmosphere of Mars was among the primary objectives of the ExoMars Trace Gas Orbiter (TGO) mission. Its discovery using the Atmospheric Chemistry Suite mid-infrared channel (ACS MIR) showed a distinct seasonality and possible link to dust activity. This paper is part 2 of a study investigating the link between HCl and aerosols by comparing gas measurements made with TGO to dust and water ice opacities measured with the Mars Climate Sounder (MCS). In part 1, we showed, and compared, the seasonal evolution of vertical profiles of HCl, water vapor, temperature, dust opacity, and water ice opacity over the dusty periods around perihelion (solar longitudes 180°–360°) across Mars years 34–36. In part 2, we investigated the quantitative correlations in the vertical distribution between each quantity, as well as ozone. We show that there is a strong positive correlation between HCl and water vapor, which is expected due to fast photochemical production rates for HCl when reacting with water vapor photolysis products. We also show a strong positive correlation between water vapor and temperature, but are unable to show any correlation between temperature and HCl. There are weak correlations between the opacities of dust and water ice, and dust and water vapor, but only very low correlations between dust and HCl. We close with a discussion of possible sources and sinks and that interactions between HCl and water ice are the most likely for both, given the inter-comparison.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 8","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008351","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008351","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The detection of hydrogen chloride (HCl) in the atmosphere of Mars was among the primary objectives of the ExoMars Trace Gas Orbiter (TGO) mission. Its discovery using the Atmospheric Chemistry Suite mid-infrared channel (ACS MIR) showed a distinct seasonality and possible link to dust activity. This paper is part 2 of a study investigating the link between HCl and aerosols by comparing gas measurements made with TGO to dust and water ice opacities measured with the Mars Climate Sounder (MCS). In part 1, we showed, and compared, the seasonal evolution of vertical profiles of HCl, water vapor, temperature, dust opacity, and water ice opacity over the dusty periods around perihelion (solar longitudes 180°–360°) across Mars years 34–36. In part 2, we investigated the quantitative correlations in the vertical distribution between each quantity, as well as ozone. We show that there is a strong positive correlation between HCl and water vapor, which is expected due to fast photochemical production rates for HCl when reacting with water vapor photolysis products. We also show a strong positive correlation between water vapor and temperature, but are unable to show any correlation between temperature and HCl. There are weak correlations between the opacities of dust and water ice, and dust and water vapor, but only very low correlations between dust and HCl. We close with a discussion of possible sources and sinks and that interactions between HCl and water ice are the most likely for both, given the inter-comparison.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.