Anti-sloshing control: Flatness-based trajectory planning and tracking control with an integrated extended state observer

IF 1.5 Q3 AUTOMATION & CONTROL SYSTEMS
Khanh Nguyen Viet, Minh Do Duc, Thanh Cao Duc, Tung Lam Nguyen
{"title":"Anti-sloshing control: Flatness-based trajectory planning and tracking control with an integrated extended state observer","authors":"Khanh Nguyen Viet,&nbsp;Minh Do Duc,&nbsp;Thanh Cao Duc,&nbsp;Tung Lam Nguyen","doi":"10.1049/csy2.12121","DOIUrl":null,"url":null,"abstract":"<p>The phenomenon of sloshing causes a significantly negative impact on a wide range of industries. A time-optimal flatness-based trajectory planning and Lyapunov-based model predictive control (LMPC) is proposed for trajectory tracking of a transmitting cylindrical container filled with liquid. Firstly, this research presents an equivalent discrete model based on a mass-spring-damper system. Subsequently, after the flatness of the adopted non-linear model for 2D is established, time-optimal trajectories are introduced. A control method called LMPC is shown to solve the problem of orbital tracking, which allows setting limits for state variables. In addition, to ensure system performance, a linear extended state observer (LESO) is integrated to cope with system uncertainties. Finally, the efficiency of the proposed approach for liquid sloshing suppression and tracking is illustrated by simulations.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12121","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/csy2.12121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The phenomenon of sloshing causes a significantly negative impact on a wide range of industries. A time-optimal flatness-based trajectory planning and Lyapunov-based model predictive control (LMPC) is proposed for trajectory tracking of a transmitting cylindrical container filled with liquid. Firstly, this research presents an equivalent discrete model based on a mass-spring-damper system. Subsequently, after the flatness of the adopted non-linear model for 2D is established, time-optimal trajectories are introduced. A control method called LMPC is shown to solve the problem of orbital tracking, which allows setting limits for state variables. In addition, to ensure system performance, a linear extended state observer (LESO) is integrated to cope with system uncertainties. Finally, the efficiency of the proposed approach for liquid sloshing suppression and tracking is illustrated by simulations.

Abstract Image

防滑控制:基于平整度的轨迹规划和跟踪控制与综合扩展状态观测器
荡气现象给各行各业带来了极大的负面影响。针对装满液体的传输圆柱形容器的轨迹跟踪,提出了一种基于时间最优平面度的轨迹规划和基于李亚普诺夫的模型预测控制(LMPC)。首先,本研究提出了一个基于质量-弹簧-阻尼系统的等效离散模型。随后,在建立了所采用的二维非线性模型的平面性之后,引入了时间最优轨迹。一种名为 LMPC 的控制方法被用于解决轨道跟踪问题,它允许为状态变量设置限制。此外,为确保系统性能,还集成了线性扩展状态观测器(LESO),以应对系统的不确定性。最后,通过仿真说明了所提方法在液体荡浮抑制和跟踪方面的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信