Zheng Li , Junyu Ren , Jinyao Ma , Caili Zhang , Wenjun Wang , Yuping Li , Nan Dong , Peide Han
{"title":"B and Ce composite microalloying for improving high-temperature oxidation resistance of 254SMO super-austenite stainless steel","authors":"Zheng Li , Junyu Ren , Jinyao Ma , Caili Zhang , Wenjun Wang , Yuping Li , Nan Dong , Peide Han","doi":"10.1016/j.intermet.2024.108457","DOIUrl":null,"url":null,"abstract":"<div><p>Aiming at serious oxidation problem of 254SMO super-austenitic stainless steel during hot working, the influence of B and Ce composite microalloying on its oxidation behavior was comparatively investigated at 1050 and 1100 °C. The results demonstrated that the combination of B and Ce can significantly alter the composition of the oxide film in 254SMO. Particularly, B and Ce composite microalloying can effectively promote the diffusion of Cr to the surface, and form a dense Cr<sub>2</sub>O<sub>3</sub> oxide film at a faster rate in the initial stage, which is more conducive to inhibiting the Mo volatilization and thus improving the oxidation resistance of 254SMO steels. Additionally, compared to the 0.005 wt% B (50B) and 0.005 wt% B together with 0.002 wt% Ce (50B + 20Ce) samples, the addition of 0.005 wt% B together with 0.005 wt% Ce (50B + 50Ce) had a more significant effect on improving high-temperature oxidation resistance of 254SMO. This research provides a valuable scholarly reference for improving the oxidation resistance of super-austenite stainless steels.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"174 ","pages":"Article 108457"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524002760","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aiming at serious oxidation problem of 254SMO super-austenitic stainless steel during hot working, the influence of B and Ce composite microalloying on its oxidation behavior was comparatively investigated at 1050 and 1100 °C. The results demonstrated that the combination of B and Ce can significantly alter the composition of the oxide film in 254SMO. Particularly, B and Ce composite microalloying can effectively promote the diffusion of Cr to the surface, and form a dense Cr2O3 oxide film at a faster rate in the initial stage, which is more conducive to inhibiting the Mo volatilization and thus improving the oxidation resistance of 254SMO steels. Additionally, compared to the 0.005 wt% B (50B) and 0.005 wt% B together with 0.002 wt% Ce (50B + 20Ce) samples, the addition of 0.005 wt% B together with 0.005 wt% Ce (50B + 50Ce) had a more significant effect on improving high-temperature oxidation resistance of 254SMO. This research provides a valuable scholarly reference for improving the oxidation resistance of super-austenite stainless steels.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.