{"title":"A homogeneous multi-vehicle cooperative group decision-making method in complicated mixed traffic scenarios","authors":"","doi":"10.1016/j.trc.2024.104833","DOIUrl":null,"url":null,"abstract":"<div><p>Connected and Automated Vehicles (CAVs) are expected to reshape the transportation system, and cooperative group intelligence of CAVs has great potential for improving transportation efficiency and safety. One challenge for CAV group driving is the decision-making under scenarios mixed with CAV and human-driven vehicles (HDV). Current studies mainly use methods based on single physical rules such as platoon driving or formation switch control, failing to reach a balanced and homogeneous state of optimal efficiency and risk in mixed traffic environments. In addition, most studies focus only on one specific type of scene, lacking the scene adaptability to various surrounding conditions. This paper proposes a homogeneous multi-vehicle cooperative group decision-making method targeting mixed traffic scenarios. A bi-level framework composed of behavior-level and trajectory-level decision-making is established to achieve balanced optimal cooperation. A region-driven behavioral decision mechanism is designed to decompose vehicle actions into a unified form of sequential target regions. Solutions are derived based on Cooperative Driving Safety Field, a risk assessment module inspired by field energy theory. The trajectory-level decision module takes the target regions as input and generates the control quantities of the CAVs through target point selection, conflict reconciliation, and dynamic constraint consideration. Experimental results on 19 various scenarios and continuous traffic flow scenes indicate that the proposed method significantly increases passing efficiency, reduces driving risk, and improves scene adaptability. In addition, experiments on multiple kinds of scenarios including intersections, ramps, bottlenecks, etc. prove that our method can adapt to various road topology structures. Feasibility is also verified through scaled physical platform validations and real-vehicle road tests.</p></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X24003541","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Connected and Automated Vehicles (CAVs) are expected to reshape the transportation system, and cooperative group intelligence of CAVs has great potential for improving transportation efficiency and safety. One challenge for CAV group driving is the decision-making under scenarios mixed with CAV and human-driven vehicles (HDV). Current studies mainly use methods based on single physical rules such as platoon driving or formation switch control, failing to reach a balanced and homogeneous state of optimal efficiency and risk in mixed traffic environments. In addition, most studies focus only on one specific type of scene, lacking the scene adaptability to various surrounding conditions. This paper proposes a homogeneous multi-vehicle cooperative group decision-making method targeting mixed traffic scenarios. A bi-level framework composed of behavior-level and trajectory-level decision-making is established to achieve balanced optimal cooperation. A region-driven behavioral decision mechanism is designed to decompose vehicle actions into a unified form of sequential target regions. Solutions are derived based on Cooperative Driving Safety Field, a risk assessment module inspired by field energy theory. The trajectory-level decision module takes the target regions as input and generates the control quantities of the CAVs through target point selection, conflict reconciliation, and dynamic constraint consideration. Experimental results on 19 various scenarios and continuous traffic flow scenes indicate that the proposed method significantly increases passing efficiency, reduces driving risk, and improves scene adaptability. In addition, experiments on multiple kinds of scenarios including intersections, ramps, bottlenecks, etc. prove that our method can adapt to various road topology structures. Feasibility is also verified through scaled physical platform validations and real-vehicle road tests.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.