Stochastic symplectic reduced-order modeling for model-form uncertainty quantification in molecular dynamics simulations in various statistical ensembles

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
{"title":"Stochastic symplectic reduced-order modeling for model-form uncertainty quantification in molecular dynamics simulations in various statistical ensembles","authors":"","doi":"10.1016/j.cma.2024.117323","DOIUrl":null,"url":null,"abstract":"<div><p>This work focuses on the representation of model-form uncertainties in molecular dynamics simulations in various statistical ensembles. In prior contributions, the modeling of such uncertainties was formalized and applied to quantify the impact of, and the error generated by, pair-potential selection in the microcanonical ensemble (NVE). In this work, we extend this formulation and present a linear-subspace reduced-order model for the canonical (NVT) and isobaric (NPT) ensembles. The symplectic reduced-order basis is randomized on the tangent space of the Stiefel manifold to provide topological relationships and capture model-form uncertainty. Using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), we assess the relevance of these stochastic reduced-order atomistic models on canonical problems involving a Lennard-Jones fluid and an argon crystal melt.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524005784","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work focuses on the representation of model-form uncertainties in molecular dynamics simulations in various statistical ensembles. In prior contributions, the modeling of such uncertainties was formalized and applied to quantify the impact of, and the error generated by, pair-potential selection in the microcanonical ensemble (NVE). In this work, we extend this formulation and present a linear-subspace reduced-order model for the canonical (NVT) and isobaric (NPT) ensembles. The symplectic reduced-order basis is randomized on the tangent space of the Stiefel manifold to provide topological relationships and capture model-form uncertainty. Using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), we assess the relevance of these stochastic reduced-order atomistic models on canonical problems involving a Lennard-Jones fluid and an argon crystal melt.

随机交折减阶建模,用于量化各种统计集合中分子动力学模拟的模型形式不确定性
这项工作的重点是在各种统计集合中表示分子动力学模拟中的模型形式不确定性。在之前的研究中,我们对这种不确定性进行了形式化建模,并将其应用于量化微典型集合(NVE)中配对势能选择的影响和产生的误差。在这项工作中,我们扩展了这一表述,并提出了一个线性子空间减阶模型,用于正典集合(NVT)和等压集合(NPT)。交折减阶基在 Stiefel 流形的切空间上随机化,以提供拓扑关系并捕捉模型形式的不确定性。利用大规模原子/分子大规模并行模拟器(LAMMPS),我们评估了这些随机降阶原子模型在涉及伦纳德-琼斯流体和氩晶体熔体的典型问题上的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信