{"title":"An optimally convergent Fictitious Domain method for interface problems","authors":"","doi":"10.1016/j.cma.2024.117327","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a novel Fictitious Domain (FD) unfitted method for interface problems associated with a second-order elliptic linear differential operator, that achieves optimal convergence without the need for adaptive mesh refinements nor enrichments of the Finite Element spaces. The key aspect of the proposed method is that it extends the solution into the fictitious domain in a way that ensures high global regularity. Continuity of the solution across the interface is enforced through a boundary Lagrange multiplier. The subdomains coupling, however, is not achieved by means of the duality pairing with the Lagrange multiplier, but through an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> product with the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> Riesz representative of the latter, thus avoiding gradient jumps across the interface. Thanks to the enhanced regularity, the proposed method attains an increase, with respect to standard FD methods, of up to one order of convergence in energy norm. The Finite Element formulation of the method is presented, followed by its analysis. Numerical tests on a model problem demonstrate its effectiveness and its superior accuracy compared to standard unfitted methods.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045782524005826/pdfft?md5=76bbb3321bd111da71ce05588f536f5b&pid=1-s2.0-S0045782524005826-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524005826","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a novel Fictitious Domain (FD) unfitted method for interface problems associated with a second-order elliptic linear differential operator, that achieves optimal convergence without the need for adaptive mesh refinements nor enrichments of the Finite Element spaces. The key aspect of the proposed method is that it extends the solution into the fictitious domain in a way that ensures high global regularity. Continuity of the solution across the interface is enforced through a boundary Lagrange multiplier. The subdomains coupling, however, is not achieved by means of the duality pairing with the Lagrange multiplier, but through an product with the Riesz representative of the latter, thus avoiding gradient jumps across the interface. Thanks to the enhanced regularity, the proposed method attains an increase, with respect to standard FD methods, of up to one order of convergence in energy norm. The Finite Element formulation of the method is presented, followed by its analysis. Numerical tests on a model problem demonstrate its effectiveness and its superior accuracy compared to standard unfitted methods.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.