{"title":"Effects of temperature on pure mode-I and mode-Ⅱ fracture behaviors and acoustic emission characteristics of granite using a grain-based model","authors":"","doi":"10.1016/j.tafmec.2024.104637","DOIUrl":null,"url":null,"abstract":"<div><p>To investigate the effects of thermally induced microcracks on the pure mode-I and mode-Ⅱ fracture behaviors of the granite, a Grain-based model (GBM) was used to build cracked straight-through Brazilian disc (CSTBD) granite specimens. Splitting tests were conducted on the CSTBD specimens treated at various temperatures under pure mode-I and mode-Ⅱ loadings, and the moment tensor algorithm was utilized to record the acoustic emission (AE) events generated by fracture during loading. The results indicate that thermally induced microcracks predominantly consist of intergranular and intragranular tensile cracks, with quartz phase transition significantly increasing the number of intragranular tensile cracks. With the increase in heat-treatment temperature, thermally induced microcracks gradually guide the initiation direction of load-induced cracks, making the crack propagation path more tortuous. The AE characteristics reveal that the fracture behavior of the CSTBD specimen heat-treated at 600 ℃ transitions from brittle to ductile. Furthermore, thermally induced microcracks can constrain the propagation distance of load-induced cracks, increasing the small-scale AE events and the <em>b</em>-value, thereby reducing the AE magnitude during failure.</p></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844224003872","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the effects of thermally induced microcracks on the pure mode-I and mode-Ⅱ fracture behaviors of the granite, a Grain-based model (GBM) was used to build cracked straight-through Brazilian disc (CSTBD) granite specimens. Splitting tests were conducted on the CSTBD specimens treated at various temperatures under pure mode-I and mode-Ⅱ loadings, and the moment tensor algorithm was utilized to record the acoustic emission (AE) events generated by fracture during loading. The results indicate that thermally induced microcracks predominantly consist of intergranular and intragranular tensile cracks, with quartz phase transition significantly increasing the number of intragranular tensile cracks. With the increase in heat-treatment temperature, thermally induced microcracks gradually guide the initiation direction of load-induced cracks, making the crack propagation path more tortuous. The AE characteristics reveal that the fracture behavior of the CSTBD specimen heat-treated at 600 ℃ transitions from brittle to ductile. Furthermore, thermally induced microcracks can constrain the propagation distance of load-induced cracks, increasing the small-scale AE events and the b-value, thereby reducing the AE magnitude during failure.
期刊介绍:
Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind.
The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.