Modeling the effect of material heterogeneity on the thermo-mechanical behavior of concrete using mesoscale and stochastic field approaches

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
{"title":"Modeling the effect of material heterogeneity on the thermo-mechanical behavior of concrete using mesoscale and stochastic field approaches","authors":"","doi":"10.1016/j.tafmec.2024.104622","DOIUrl":null,"url":null,"abstract":"<div><p>The adverse impact of high temperatures on concrete is a well-recognized issue that can lead to significant mechanical deterioration and structural integrity loss. Factors such as aggregate type, cement composition, temperature, duration of exposure, and moisture content can substantially influence the fire resistance of concrete. To simulate and better understand the effects arising from the heterogeneity of concrete in a fire situation, a mesoscale approach is proposed, using the Mesh Fragmentation Technique (MFT) to assess the complex thermo-mechanical behavior of concrete. The MFT introduces high aspect ratio interface elements to model crack propagation and interfacial transition zones by means of an appropriated tensile damage constitutive law. In this extended framework, a fully-coupled thermo-mechanical model is proposed. The modeling approach includes considerations of both macroscopic and mesoscopic scales, in which the coarse aggregate, mortar matrix and interfacial transition zones are represented. Besides, a stochastic distribution is assumed for the material properties to account for the lower scale heterogeneity. The main novelty proposed in this study consists in the synergy of mesoscale and stochastic approaches that are herein combined to model the effect of heterogeneity on the concurrent macro-mesoscale thermo-mechanical behavior of concrete. To validate the numerical model’s capabilities in capturing thermally induced cracks, benchmark cases and a simulation of a bending beam exposed to elevated temperatures are presented. The results demonstrate the potential of the proposed approach in predicting the behavior of concrete subjected to thermal loading and the role played by heterogeneity in the thermally induced cracking.</p></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844224003720","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The adverse impact of high temperatures on concrete is a well-recognized issue that can lead to significant mechanical deterioration and structural integrity loss. Factors such as aggregate type, cement composition, temperature, duration of exposure, and moisture content can substantially influence the fire resistance of concrete. To simulate and better understand the effects arising from the heterogeneity of concrete in a fire situation, a mesoscale approach is proposed, using the Mesh Fragmentation Technique (MFT) to assess the complex thermo-mechanical behavior of concrete. The MFT introduces high aspect ratio interface elements to model crack propagation and interfacial transition zones by means of an appropriated tensile damage constitutive law. In this extended framework, a fully-coupled thermo-mechanical model is proposed. The modeling approach includes considerations of both macroscopic and mesoscopic scales, in which the coarse aggregate, mortar matrix and interfacial transition zones are represented. Besides, a stochastic distribution is assumed for the material properties to account for the lower scale heterogeneity. The main novelty proposed in this study consists in the synergy of mesoscale and stochastic approaches that are herein combined to model the effect of heterogeneity on the concurrent macro-mesoscale thermo-mechanical behavior of concrete. To validate the numerical model’s capabilities in capturing thermally induced cracks, benchmark cases and a simulation of a bending beam exposed to elevated temperatures are presented. The results demonstrate the potential of the proposed approach in predicting the behavior of concrete subjected to thermal loading and the role played by heterogeneity in the thermally induced cracking.

利用中尺度和随机场方法模拟材料异质性对混凝土热机械行为的影响
高温对混凝土的不利影响是一个公认的问题,可导致严重的机械老化和结构完整性丧失。骨料类型、水泥成分、温度、暴露时间和含水量等因素都会对混凝土的耐火性产生重大影响。为了模拟和更好地理解混凝土在火灾情况下的异质性所产生的影响,我们提出了一种中尺度方法,使用网格破碎技术(MFT)来评估混凝土复杂的热机械行为。MFT 引入了高纵横比界面元素,通过适当的拉伸损伤构成法来模拟裂缝扩展和界面过渡区。在这个扩展框架中,提出了一个完全耦合的热机械模型。建模方法包括对宏观和中观尺度的考虑,其中粗骨料、砂浆基质和界面过渡区均有体现。此外,还假定了材料属性的随机分布,以考虑较低尺度的异质性。本研究提出的主要新颖之处在于中尺度和随机方法的协同作用,这两种方法结合起来可以模拟异质性对同时发生的宏观-中尺度混凝土热机械行为的影响。为了验证数值模型捕捉热诱导裂缝的能力,介绍了基准案例和暴露在高温下的弯曲梁的模拟。结果表明了所提出的方法在预测受热荷载作用的混凝土行为方面的潜力,以及异质性在热诱导开裂中所起的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Applied Fracture Mechanics
Theoretical and Applied Fracture Mechanics 工程技术-工程:机械
CiteScore
8.40
自引率
18.90%
发文量
435
审稿时长
37 days
期刊介绍: Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind. The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信