The impact of artificial intelligence on large vessel occlusion stroke detection and management: A systematic review meta-analysis

Elan Zebrowitz , Sonali Dadoo , Paige Brabant , Anaz Uddin , Esewi Aifuwa , Danielle Maraia , Mill Etienne , Neriy Yakubov , Myoungmee Babu , Benson Babu
{"title":"The impact of artificial intelligence on large vessel occlusion stroke detection and management: A systematic review meta-analysis","authors":"Elan Zebrowitz ,&nbsp;Sonali Dadoo ,&nbsp;Paige Brabant ,&nbsp;Anaz Uddin ,&nbsp;Esewi Aifuwa ,&nbsp;Danielle Maraia ,&nbsp;Mill Etienne ,&nbsp;Neriy Yakubov ,&nbsp;Myoungmee Babu ,&nbsp;Benson Babu","doi":"10.1016/j.ibmed.2024.100161","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Stroke remains the second leading cause of death worldwide, with many survivors facing significant disabilities. In acute stroke care, the timeless adage 'Time is brain' underscores the vital need for quick action. Innovative Artificial Intelligence (AI) technology potentially enables swift detection and management of acute ischemic strokes, revolutionizing acute stroke care towards enhanced automation.</p></div><div><h3>Methods</h3><p>The study is registered with Prospero under CRD42024496716 and adheres to the Problem, Intervention, Comparison, and Outcomes framework (PICO). The analysis used Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched Embase, PubMed, DBLP, Google Scholar, IEEE Xplore, Cochrane database, IEEE, Web of Science, ArXiv, MedRxiv, and Semantic Scholar. The articles included were published between 2019 and 2023. Out of 1528 articles identified, thirty-seven met the inclusion criteria.</p></div><div><h3>Results</h3><p>We compared AI-augmented Large Vessel Occlusion (LVO) detection and non-AI LVO detection in various patient processing times related to emergent endovascular therapy in acute ischemic strokes. Triage Time, Door-to-Intervention Notification Time (INR), and Door-to -Arterial Puncture Time revealed an odds ratio (OR) of 0.39 (95 % CI: 0.29–0.54, p &lt; 0.001), 0.30 (95 % CI: 0.21–0.42, p &lt; 0.001), and 0.50 (95 % CI: 0detection 0.30–0.82, p = 0.007), respectively -- all of which had negligible heterogeneity (I^2 = 0). CT-to-Puncture-Time and Door-to-CTA-Time yielded an OR of 0.57 (95 % CI: 0.31–1.04, p = 0.065) and 0.77 (95 % CI: 0.37–1.60, p = 0.489), respectively -- both of which had negligible heterogeneity (I^2 = 0). The Last Known Well (LWK) to Time of Arrival resulted in an OR of 1.15 (95 % CI: 0.83–1.59, p = 0.409, I^2 = 0). AI stroke detection sensitivity OR of 0.91 (95 % CI: 0.88–0.95, p &lt; 0.001) should be interpreted with potential heterogeneity in mind (I^2 = 69.3). National Institute of Health score (NIHSS) mean of 16.20 (95 % CI: 14.96–17.45, p = 0.001, I^2 = 0). Patient Transfer-Times between primary and comprehensive stroke centers generated an OR of 0.98 (95 % CI: 0.73–1.32, p = 893, I^2 = 0). Similarly, Door-in-Door-Out Time (DIDO) had an OR of 1.19 (95 % CI: 0.21–6.88, p = 0.848) and low heterogeneity (I^2 = 5.1). The results indicated significant differences across several parameters between the AI augmentation and non-AI groups.</p></div><div><h3>Conclusion</h3><p>Our findings highlight how AI augments healthcare providers' ability to detect and manage strokes swiftly and accurately within acute care settings. As these technologies progress, healthcare organizations mature, and AI becomes more integrated into healthcare systems, longitudinal studies are critical in evaluating its impact on workflow efficiency, cost-effectiveness, and clinical outcomes.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"10 ","pages":"Article 100161"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666521224000280/pdfft?md5=06eaca45e04d34842726f805c16400c5&pid=1-s2.0-S2666521224000280-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Stroke remains the second leading cause of death worldwide, with many survivors facing significant disabilities. In acute stroke care, the timeless adage 'Time is brain' underscores the vital need for quick action. Innovative Artificial Intelligence (AI) technology potentially enables swift detection and management of acute ischemic strokes, revolutionizing acute stroke care towards enhanced automation.

Methods

The study is registered with Prospero under CRD42024496716 and adheres to the Problem, Intervention, Comparison, and Outcomes framework (PICO). The analysis used Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched Embase, PubMed, DBLP, Google Scholar, IEEE Xplore, Cochrane database, IEEE, Web of Science, ArXiv, MedRxiv, and Semantic Scholar. The articles included were published between 2019 and 2023. Out of 1528 articles identified, thirty-seven met the inclusion criteria.

Results

We compared AI-augmented Large Vessel Occlusion (LVO) detection and non-AI LVO detection in various patient processing times related to emergent endovascular therapy in acute ischemic strokes. Triage Time, Door-to-Intervention Notification Time (INR), and Door-to -Arterial Puncture Time revealed an odds ratio (OR) of 0.39 (95 % CI: 0.29–0.54, p < 0.001), 0.30 (95 % CI: 0.21–0.42, p < 0.001), and 0.50 (95 % CI: 0detection 0.30–0.82, p = 0.007), respectively -- all of which had negligible heterogeneity (I^2 = 0). CT-to-Puncture-Time and Door-to-CTA-Time yielded an OR of 0.57 (95 % CI: 0.31–1.04, p = 0.065) and 0.77 (95 % CI: 0.37–1.60, p = 0.489), respectively -- both of which had negligible heterogeneity (I^2 = 0). The Last Known Well (LWK) to Time of Arrival resulted in an OR of 1.15 (95 % CI: 0.83–1.59, p = 0.409, I^2 = 0). AI stroke detection sensitivity OR of 0.91 (95 % CI: 0.88–0.95, p < 0.001) should be interpreted with potential heterogeneity in mind (I^2 = 69.3). National Institute of Health score (NIHSS) mean of 16.20 (95 % CI: 14.96–17.45, p = 0.001, I^2 = 0). Patient Transfer-Times between primary and comprehensive stroke centers generated an OR of 0.98 (95 % CI: 0.73–1.32, p = 893, I^2 = 0). Similarly, Door-in-Door-Out Time (DIDO) had an OR of 1.19 (95 % CI: 0.21–6.88, p = 0.848) and low heterogeneity (I^2 = 5.1). The results indicated significant differences across several parameters between the AI augmentation and non-AI groups.

Conclusion

Our findings highlight how AI augments healthcare providers' ability to detect and manage strokes swiftly and accurately within acute care settings. As these technologies progress, healthcare organizations mature, and AI becomes more integrated into healthcare systems, longitudinal studies are critical in evaluating its impact on workflow efficiency, cost-effectiveness, and clinical outcomes.

人工智能对大血管闭塞性卒中检测和管理的影响:系统综述荟萃分析
引言 脑卒中仍然是全球第二大死因,许多幸存者面临严重残疾。在急性脑卒中护理中,"时间就是大脑 "这句永恒的格言强调了快速行动的重要性。创新的人工智能(AI)技术有可能实现对急性缺血性脑卒中的快速检测和管理,彻底改变急性脑卒中护理,提高自动化水平。分析采用了系统综述和荟萃分析首选报告项目(PRISMA)指南。我们检索了Embase、PubMed、DBLP、Google Scholar、IEEE Xplore、Cochrane数据库、IEEE、Web of Science、ArXiv、MedRxiv和Semantic Scholar。收录的文章发表于 2019 年至 2023 年之间。结果我们比较了人工智能增强的大血管闭塞(LVO)检测和非人工智能增强的大血管闭塞检测在急性缺血性脑卒中紧急血管内治疗相关的各种患者处理时间。分诊时间、门到介入通知时间(INR)和门到动脉穿刺时间显示的几率比(OR)分别为 0.39(95 % CI:0.29-0.54,p < 0.001)、0.30(95 % CI:0.21-0.42,p <0.001)和 0.50(95 % CI:0detection 0.30-0.82,p = 0.007)--所有这些指标的异质性均可忽略不计(I^2 = 0)。CT-穿刺-时间和门-CTA-时间的OR值分别为0.57(95 % CI:0.31-1.04,p = 0.065)和0.77(95 % CI:0.37-1.60,p = 0.489),两者的异质性均可忽略不计(I^2 = 0)。最后已知井(LWK)到到达时间的 OR 值为 1.15(95 % CI:0.83-1.59,p = 0.409,I^2 = 0)。人工智能卒中检测灵敏度 OR 为 0.91(95 % CI:0.88-0.95,p < 0.001),在解释时应考虑潜在的异质性(I^2 = 69.3)。美国国立卫生研究院评分(NIHSS)平均值为 16.20(95 % CI:14.96-17.45,p = 0.001,I^2 = 0)。初级卒中中心与综合卒中中心之间的患者转运时间 OR 为 0.98(95 % CI:0.73-1.32,p = 893,I^2 = 0)。同样,门内-门外时间(DIDO)的 OR 值为 1.19(95 % CI:0.21-6.88,p = 0.848),异质性较低(I^2 = 5.1)。结果表明,人工智能增强组和非人工智能增强组在多个参数上存在明显差异。随着这些技术的进步、医疗机构的成熟以及人工智能与医疗系统的进一步整合,纵向研究对于评估其对工作流程效率、成本效益和临床结果的影响至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信