Piecewise nonlinear approximation for non-smooth functions

IF 1.4 Q2 MATHEMATICS, APPLIED
S. Akansha
{"title":"Piecewise nonlinear approximation for non-smooth functions","authors":"S. Akansha","doi":"10.1016/j.rinam.2024.100491","DOIUrl":null,"url":null,"abstract":"<div><p>Piecewise affine or linear approximation has garnered significant attention as a technique for approximating piecewise-smooth functions. In this study, we propose a novel approach: piecewise non-linear approximation based on rational approximation, aimed at approximating non-smooth functions. We introduce a method termed piecewise Padé Chebyshev (PiPC) tailored for approximating univariate piecewise smooth functions. Our investigation focuses on assessing the effectiveness of PiPC in mitigating the Gibbs phenomenon during the approximation of piecewise smooth functions. Additionally, we provide error estimates and convergence results of PiPC for non-smooth functions. Notably, our technique excels in capturing singularities, if present, within the function with minimal Gibbs oscillations, without necessitating the explicit specification of singularity locations. To the best of our knowledge, prior research has not explored the use of piecewise non-linear approximation for approximating non-smooth functions. Finally, we validate the efficacy of our methods through numerical experiments, employing PiPC to reconstruct a non-trivial non-smooth function, thus demonstrating its capability to significantly alleviate the Gibbs phenomenon.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100491"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259003742400061X/pdfft?md5=8c7e63ace109567fe6eee77da6b27b4a&pid=1-s2.0-S259003742400061X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259003742400061X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Piecewise affine or linear approximation has garnered significant attention as a technique for approximating piecewise-smooth functions. In this study, we propose a novel approach: piecewise non-linear approximation based on rational approximation, aimed at approximating non-smooth functions. We introduce a method termed piecewise Padé Chebyshev (PiPC) tailored for approximating univariate piecewise smooth functions. Our investigation focuses on assessing the effectiveness of PiPC in mitigating the Gibbs phenomenon during the approximation of piecewise smooth functions. Additionally, we provide error estimates and convergence results of PiPC for non-smooth functions. Notably, our technique excels in capturing singularities, if present, within the function with minimal Gibbs oscillations, without necessitating the explicit specification of singularity locations. To the best of our knowledge, prior research has not explored the use of piecewise non-linear approximation for approximating non-smooth functions. Finally, we validate the efficacy of our methods through numerical experiments, employing PiPC to reconstruct a non-trivial non-smooth function, thus demonstrating its capability to significantly alleviate the Gibbs phenomenon.

非光滑函数的分段非线性逼近
片断仿射或线性逼近作为一种逼近片断光滑函数的技术,已经引起了广泛关注。在本研究中,我们提出了一种新方法:基于有理逼近的片断非线性逼近,旨在逼近非光滑函数。我们引入了一种称为片断 Padé Chebyshev (PiPC) 的方法,该方法专为逼近单变量片断光滑函数而定制。我们的研究重点是评估 PiPC 在近似片断平稳函数过程中缓解吉布斯现象的有效性。此外,我们还提供了 PiPC 对非平稳函数的误差估计和收敛结果。值得注意的是,如果函数中存在奇点,我们的技术能以最小的吉布斯振荡捕捉奇点,而无需明确指定奇点位置。据我们所知,之前的研究还没有探索过利用片断非线性逼近来逼近非光滑函数。最后,我们通过数值实验验证了我们方法的有效性,利用 PiPC 重构了一个非难非光滑函数,从而证明了其显著缓解吉布斯现象的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信