Gaseous Object Detection

Kailai Zhou;Yibo Wang;Tao Lv;Qiu Shen;Xun Cao
{"title":"Gaseous Object Detection","authors":"Kailai Zhou;Yibo Wang;Tao Lv;Qiu Shen;Xun Cao","doi":"10.1109/TPAMI.2024.3449994","DOIUrl":null,"url":null,"abstract":"Object detection, a fundamental and challenging problem in computer vision, has experienced rapid development due to the effectiveness of deep learning. The current objects to be detected are mostly rigid solid substances with apparent and distinct visual characteristics. In this paper, we endeavor on a scarcely explored task named Gaseous Object Detection (GOD), which is undertaken to explore whether the object detection techniques can be extended from solid substances to gaseous substances. Nevertheless, the gas exhibits significantly different visual characteristics: 1) saliency deficiency, 2) arbitrary and ever-changing shapes, 3) lack of distinct boundaries. To facilitate the study on this challenging task, we construct a GOD-Video dataset comprising 600 videos (141,017 frames) that cover various attributes with multiple types of gases. A comprehensive benchmark is established based on this dataset, allowing for a rigorous evaluation of frame-level and video-level detectors. Deduced from the Gaussian dispersion model, the physics-inspired Voxel Shift Field (VSF) is designed to model geometric irregularities and ever-changing shapes in potential 3D space. By integrating VSF into Faster RCNN, the VSF RCNN serves as a simple but strong baseline for gaseous object detection. Our work aims to attract further research into this valuable albeit challenging area.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"46 12","pages":"10715-10731"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10648775/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Object detection, a fundamental and challenging problem in computer vision, has experienced rapid development due to the effectiveness of deep learning. The current objects to be detected are mostly rigid solid substances with apparent and distinct visual characteristics. In this paper, we endeavor on a scarcely explored task named Gaseous Object Detection (GOD), which is undertaken to explore whether the object detection techniques can be extended from solid substances to gaseous substances. Nevertheless, the gas exhibits significantly different visual characteristics: 1) saliency deficiency, 2) arbitrary and ever-changing shapes, 3) lack of distinct boundaries. To facilitate the study on this challenging task, we construct a GOD-Video dataset comprising 600 videos (141,017 frames) that cover various attributes with multiple types of gases. A comprehensive benchmark is established based on this dataset, allowing for a rigorous evaluation of frame-level and video-level detectors. Deduced from the Gaussian dispersion model, the physics-inspired Voxel Shift Field (VSF) is designed to model geometric irregularities and ever-changing shapes in potential 3D space. By integrating VSF into Faster RCNN, the VSF RCNN serves as a simple but strong baseline for gaseous object detection. Our work aims to attract further research into this valuable albeit challenging area.
气态物体探测
物体检测是计算机视觉领域的一个基本而又具有挑战性的问题,由于深度学习的有效性,这一问题得到了快速发展。目前需要检测的物体大多是具有明显视觉特征的刚性固体物质。在本文中,我们致力于研究一项鲜有探索的任务--气态物体检测(GOD),旨在探索物体检测技术能否从固态物质扩展到气态物质。然而,气体具有明显不同的视觉特征:1) 显著性不足;2) 任意和不断变化的形状;3) 缺乏明显的边界。为了便于研究这项具有挑战性的任务,我们构建了一个 GOD-Video 数据集,其中包括 600 个视频(141,017 帧),涵盖了多种类型气体的各种属性。在此数据集的基础上建立了一个综合基准,对帧级和视频级探测器进行了严格评估。由物理学启发的体素偏移场(VSF)是从高斯离散模型中推导出来的,旨在对潜在三维空间中的几何不规则性和不断变化的形状进行建模。通过将 VSF 集成到 Faster RCNN 中,VSF RCNN 成为气态物体检测的一个简单而强大的基线。我们的工作旨在吸引对这一极具价值但又充满挑战的领域的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信