Extraction and Quantification of Total Anthocyanins, Determination of Anthocyanidin Core Structures, and Characterization of Specific Anthocyanins from Maize.

Nan Jiang, Lina Gomez, Erich Grotewold
{"title":"Extraction and Quantification of Total Anthocyanins, Determination of Anthocyanidin Core Structures, and Characterization of Specific Anthocyanins from Maize.","authors":"Nan Jiang, Lina Gomez, Erich Grotewold","doi":"10.1101/pdb.prot108577","DOIUrl":null,"url":null,"abstract":"<p><p>Anthocyanins are flavonoid pigments that accumulate in fruits and flowers that serve as attractants for pollinators and seed-dispersing organisms. Anthocyanins exhibit diverse chemical structures, characterized both by different anthocyanidin core structures and numerous chemical modifications of the anthocyanidin core. Here, we describe a protocol for the extraction and quantification of total anthocyanins, as well as for the characterization of anthocyanidin core structures and specific anthocyanins, using a spectrophotometer, high-performance liquid chromatography (HPLC), and ultra-high-performance liquid chromatography-two-dimensional mass spectrometry (UHPLC-MS/MS). The method involves anthocyanin extraction using acidic methanol, anthocyanin quantification using a spectrophotometer, determination of anthocyanidin core structure from hydrolyzed anthocyanin extracts using UHPLC-MS/MS, separation of different anthocyanins using HPLC, and characterization of specific anthocyanins using UHPLC-MS/MS. As an example, we describe how we have used this protocol to extract and quantify total anthocyanins from maize leaves, identify cyanidin as the core anthocyanidin structure, and characterize three specific anthocyanins that accumulate in maize leaves, each having a cyanidin core with decorations of a hexose group, and a malonyl or coumaroyl moiety.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.prot108577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Anthocyanins are flavonoid pigments that accumulate in fruits and flowers that serve as attractants for pollinators and seed-dispersing organisms. Anthocyanins exhibit diverse chemical structures, characterized both by different anthocyanidin core structures and numerous chemical modifications of the anthocyanidin core. Here, we describe a protocol for the extraction and quantification of total anthocyanins, as well as for the characterization of anthocyanidin core structures and specific anthocyanins, using a spectrophotometer, high-performance liquid chromatography (HPLC), and ultra-high-performance liquid chromatography-two-dimensional mass spectrometry (UHPLC-MS/MS). The method involves anthocyanin extraction using acidic methanol, anthocyanin quantification using a spectrophotometer, determination of anthocyanidin core structure from hydrolyzed anthocyanin extracts using UHPLC-MS/MS, separation of different anthocyanins using HPLC, and characterization of specific anthocyanins using UHPLC-MS/MS. As an example, we describe how we have used this protocol to extract and quantify total anthocyanins from maize leaves, identify cyanidin as the core anthocyanidin structure, and characterize three specific anthocyanins that accumulate in maize leaves, each having a cyanidin core with decorations of a hexose group, and a malonyl or coumaroyl moiety.

提取和定量总花青素、确定花青素核心结构以及鉴定玉米中的特定花青素。
花青素是积聚在果实和花朵中的类黄酮色素,对传粉者和散播种子的生物具有吸引作用。花青素的化学结构多种多样,既有不同的花青素核心结构,也有花青素核心的多种化学修饰。在此,我们介绍一种使用分光光度计、高效液相色谱法(HPLC)和超高效液相色谱-二维质谱法(UHPLC-MS/MS)提取和定量总花青素以及鉴定花青素核心结构和特定花青素的方法。该方法包括使用酸性甲醇提取花青素,使用分光光度计对花青素进行定量,使用超高效液相色谱-质谱/质谱法测定水解花青素提取物中的花青素核心结构,使用高效液相色谱法分离不同的花青素,以及使用超高效液相色谱-质谱/质谱法表征特定的花青素。举例来说,我们介绍了如何使用该方法从玉米叶片中提取和量化总花青素,确定花青素的核心结构为氰苷,并鉴定了在玉米叶片中积累的三种特定花青素的特征,每种花青素都有一个氰苷核心,其中有一个己糖基团和一个丙二酰或香豆酰基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cold Spring Harbor protocols
Cold Spring Harbor protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍: Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信