Tert promotes cardiac regenerative repair after MI through alleviating ROS-induced DNA damage response in cardiomyocyte.

IF 6.1 2区 生物学 Q1 CELL BIOLOGY
Xiaomin Wei, Yilin Zhou, Enge Shao, Xiaoran Shi, Yuan Han, Yeshen Zhang, Guoquan Wei, Hao Zheng, Senlin Huang, Yanmei Chen, Jie Sun, Yulin Liao, Wangjun Liao, Yanbing Wang, Jianping Bin, Xinzhong Li
{"title":"Tert promotes cardiac regenerative repair after MI through alleviating ROS-induced DNA damage response in cardiomyocyte.","authors":"Xiaomin Wei, Yilin Zhou, Enge Shao, Xiaoran Shi, Yuan Han, Yeshen Zhang, Guoquan Wei, Hao Zheng, Senlin Huang, Yanmei Chen, Jie Sun, Yulin Liao, Wangjun Liao, Yanbing Wang, Jianping Bin, Xinzhong Li","doi":"10.1038/s41420-024-02135-8","DOIUrl":null,"url":null,"abstract":"<p><p>Telomerase reverse transcriptase (Tert) has been found to have a protective effect on telomeric DNA, but whether it could improve the repair of reactive oxygen species (ROS)-induced DNA damage and promote myocardial regenerative repair after myocardial infarction (MI) by protecting telomeric DNA is unclear. The immunofluorescence staining with TEL-CY3 and the TeloTAGGG Telomerase PCR ELISA kit were used to show the telomere length and telomerase activity. The heart-specific Tert-deletion homozygotes were generated by using commercial Cre tool mice and flox heterozygous mice for mating. We measured the telomere length and telomerase activity of mouse cardiomyocytes (CMs) at different days of age, and the results showed that they were negatively correlated with age. Overexpressed Tert could enhance telomerase activity and lengthen telomeres, thereby repairing the DNA damage induced by ROS and promoting CM proliferation in vitro. The in vivo results indicated that enhanced Tert could significantly improve cardiac function and prognosis by alleviating CM DNA damage and promoting angiogenesis post-MI. In terms of mechanism, DNA pulldown assay was used to identify that nuclear ribonucleoprotein A2B1 (hnRNPA2B1) could be an upstream regulator of Tert in CMs. Overexpressed Tert could activate the NF-κB signaling pathway in CMs and bind to the VEGF promoter in the endothelium to increase the VEGF level. Further immunoblotting showed that Tert protected DNA from ROS-induced damage by inhibiting ATM phosphorylation and blocking the Chk1/p53/p21 pathway activation. HnRNPA2B1-activated Tert could repair the ROS-induced telomeric DNA damage to induce the cell cycle re-entry in CMs and enhance the interaction between CMs and endothelium, thus achieving cardiac regenerative repair after MI.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"10 1","pages":"381"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347641/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-024-02135-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Telomerase reverse transcriptase (Tert) has been found to have a protective effect on telomeric DNA, but whether it could improve the repair of reactive oxygen species (ROS)-induced DNA damage and promote myocardial regenerative repair after myocardial infarction (MI) by protecting telomeric DNA is unclear. The immunofluorescence staining with TEL-CY3 and the TeloTAGGG Telomerase PCR ELISA kit were used to show the telomere length and telomerase activity. The heart-specific Tert-deletion homozygotes were generated by using commercial Cre tool mice and flox heterozygous mice for mating. We measured the telomere length and telomerase activity of mouse cardiomyocytes (CMs) at different days of age, and the results showed that they were negatively correlated with age. Overexpressed Tert could enhance telomerase activity and lengthen telomeres, thereby repairing the DNA damage induced by ROS and promoting CM proliferation in vitro. The in vivo results indicated that enhanced Tert could significantly improve cardiac function and prognosis by alleviating CM DNA damage and promoting angiogenesis post-MI. In terms of mechanism, DNA pulldown assay was used to identify that nuclear ribonucleoprotein A2B1 (hnRNPA2B1) could be an upstream regulator of Tert in CMs. Overexpressed Tert could activate the NF-κB signaling pathway in CMs and bind to the VEGF promoter in the endothelium to increase the VEGF level. Further immunoblotting showed that Tert protected DNA from ROS-induced damage by inhibiting ATM phosphorylation and blocking the Chk1/p53/p21 pathway activation. HnRNPA2B1-activated Tert could repair the ROS-induced telomeric DNA damage to induce the cell cycle re-entry in CMs and enhance the interaction between CMs and endothelium, thus achieving cardiac regenerative repair after MI.

Abstract Image

Tert 通过减轻 ROS 诱导的心肌细胞 DNA 损伤反应,促进心肌梗死后的心脏再生修复。
研究发现端粒酶逆转录酶(Tert)对端粒DNA有保护作用,但它是否能通过保护端粒DNA来改善活性氧(ROS)诱导的DNA损伤修复并促进心肌梗死(MI)后的心肌再生修复尚不清楚。本研究采用TEL-CY3免疫荧光染色法和TeloTAGGG端粒酶PCR ELISA试剂盒来显示端粒长度和端粒酶活性。使用商业Cre工具小鼠和flox杂合小鼠交配产生心脏特异性Tert缺失同源基因。我们测量了不同日龄小鼠心肌细胞(CMs)的端粒长度和端粒酶活性,结果表明它们与年龄呈负相关。过表达的Tert能增强端粒酶活性并延长端粒,从而修复ROS诱导的DNA损伤并促进体外CM增殖。体内研究结果表明,增强的Tert能减轻MI后CM DNA损伤并促进血管生成,从而显著改善心脏功能和预后。在机制方面,通过DNA pulldown实验发现核糖核蛋白A2B1(hnRNPA2B1)可能是Tert在CM中的上游调节因子。过表达的 Tert 可激活 CMs 中的 NF-κB 信号通路,并与血管内皮中的 VEGF 启动子结合,从而提高 VEGF 水平。进一步的免疫印迹显示,Tert 通过抑制 ATM 磷酸化和阻断 Chk1/p53/p21 通路的激活,保护 DNA 免受 ROS 诱导的损伤。HnRNPA2B1 激活的 Tert 可修复 ROS 诱导的端粒 DNA 损伤,从而诱导 CM 细胞周期重入,并增强 CM 与内皮之间的相互作用,从而实现心肌梗死后的心脏再生修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信