Person explanatory multidimensional item response theory with the instrument package in R.

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
ACS Applied Energy Materials Pub Date : 2024-12-01 Epub Date: 2024-08-26 DOI:10.3758/s13428-024-02490-5
Michael J Kleinsasser, Ritesh Mistry, Hsing-Fang Hsieh, William J McCarthy, Trivellore Raghunathan
{"title":"Person explanatory multidimensional item response theory with the instrument package in R.","authors":"Michael J Kleinsasser, Ritesh Mistry, Hsing-Fang Hsieh, William J McCarthy, Trivellore Raghunathan","doi":"10.3758/s13428-024-02490-5","DOIUrl":null,"url":null,"abstract":"<p><p>We present the new R package instrument to perform Bayesian estimation of person explanatory multidimensional item response theory. The package implements an exploratory multidimensional item response theory model and a higher-order multidimensional item response theory model, a type of confirmatory multidimensional item response theory. Explanation of person parameters is accomplished by fixed and random effect linear regression models. Estimation is carried out using Hamiltonian Monte Carlo in Stan. In this article, we provide a detailed description of the models; we use the instrument package to demonstrate fitting explanatory item response models with fixed and random effects (i.e., mixed modeling) of person parameters in R; and, we perform a simulation study to evaluate the performance of our implementation of the models.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02490-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present the new R package instrument to perform Bayesian estimation of person explanatory multidimensional item response theory. The package implements an exploratory multidimensional item response theory model and a higher-order multidimensional item response theory model, a type of confirmatory multidimensional item response theory. Explanation of person parameters is accomplished by fixed and random effect linear regression models. Estimation is carried out using Hamiltonian Monte Carlo in Stan. In this article, we provide a detailed description of the models; we use the instrument package to demonstrate fitting explanatory item response models with fixed and random effects (i.e., mixed modeling) of person parameters in R; and, we perform a simulation study to evaluate the performance of our implementation of the models.

Abstract Image

使用 R 中的工具包进行个人解释性多维项目反应理论。
我们介绍了用于对解释性多维项目反应理论进行贝叶斯估计的新 R 软件包 instrument。该软件包实现了一个探索性多维项目反应理论模型和一个高阶多维项目反应理论模型(一种确认性多维项目反应理论)。通过固定和随机效应线性回归模型来解释人的参数。使用 Stan 中的 Hamiltonian Monte Carlo 进行估计。在本文中,我们对模型进行了详细描述;我们使用工具包演示了在 R 中拟合具有固定效应和随机效应(即混合建模)的解释性项目反应模型;我们还进行了模拟研究,以评估我们实现模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信