{"title":"A first principles study of the oxygen reduction reaction mechanism on porous Ag and Ag-TM nanostructure","authors":"Kejiang Fu , Jingjing Wu , Xin Tang","doi":"10.1016/j.ssc.2024.115665","DOIUrl":null,"url":null,"abstract":"<div><p>Porous Ag has good electron conductivity and is one of the typical oxygen reduction reaction(ORR) catalysts. In order to investigate the mechanism of porous Ag for ORR, the relaxed structure and detailed partial density of states are determined using density-functional theory. Among multiple possible active sites, the overpotential of porous Ag is 0.50 V, which is better than that of Ag (111) at 0.62 V. After doping Pt and Pd, the overpotentials are 0.47 V and 0.49 V, respectively. Furthermore, the introduction of a transition metal has led to changes in the charge distribution on the catalyst surface, which has resulted in improved catalytic performance. By investigating the synergistic effects between doped transition metals and ORR intermediates, this can facilitate the development of catalysts with higher activity and better stability.</p></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"392 ","pages":"Article 115665"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824002424","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Porous Ag has good electron conductivity and is one of the typical oxygen reduction reaction(ORR) catalysts. In order to investigate the mechanism of porous Ag for ORR, the relaxed structure and detailed partial density of states are determined using density-functional theory. Among multiple possible active sites, the overpotential of porous Ag is 0.50 V, which is better than that of Ag (111) at 0.62 V. After doping Pt and Pd, the overpotentials are 0.47 V and 0.49 V, respectively. Furthermore, the introduction of a transition metal has led to changes in the charge distribution on the catalyst surface, which has resulted in improved catalytic performance. By investigating the synergistic effects between doped transition metals and ORR intermediates, this can facilitate the development of catalysts with higher activity and better stability.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.