Rosalie M. Sterner, Patricia L. Hall, Dietrich Matern, John L. Black, Ann M. Moyer
{"title":"Genotype and Phenotype Correlation of the TPMT∗8 Allele in Thiopurine Metabolism","authors":"Rosalie M. Sterner, Patricia L. Hall, Dietrich Matern, John L. Black, Ann M. Moyer","doi":"10.1016/j.jmoldx.2024.07.005","DOIUrl":null,"url":null,"abstract":"<div><div>Thiopurine 6-mercaptopurine (6-MP) is metabolized by thiopurine methyl transferase (TPMT). <em>TPMT</em> genetic variation results in some individuals having reduced or absent TPMT enzyme activity. If these individuals take a full thiopurine dose, life-threatening adverse events can occur. Testing identifies patients with reduced or absent TPMT activity and is recommended before initiation of therapy. The <em>TPMT∗8</em> allele, defined by c.644G>A (p.Arg215His), is common among individuals of African ancestry (approximately 2.3% minor allele frequency) but is not included in genotyping recommendations due to its uncertain function. Here, a clinical TPMT enzyme activity assay was used to assess <em>TPMT</em> activity in red blood cells from 982 patients, including those with <em>∗1/∗8</em> (<em>n</em> = 22), <em>∗3A/∗8</em> (<em>n</em> = 1), and <em>∗3C/∗8</em> (<em>n</em> = 1) <em>TPMT</em> diplotypes. The average production of 6-methylmercaptopurine (primary TPMT product measured clinically) was 3.08 ± 0.16 nmol/mL per hour for <em>∗1/∗8</em> individuals, compared with 3.77 ± 0.03 nmol/mL per hour for normal metabolizers (<em>P</em> = 0.0001) and 2.39 ± 0.06 nmol 6-methylmercaptopurine/mL per hour for intermediate metabolizers (<em>P</em> < 0.0001). Individuals with a <em>TPMT∗1/∗8</em> diplotype displayed reduced 6-MP metabolism between that of normal metabolizers and intermediate metabolizers, suggesting that <em>TPMT∗8</em> is a reduced function allele.</div></div>","PeriodicalId":50128,"journal":{"name":"Journal of Molecular Diagnostics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1525157824001831","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Thiopurine 6-mercaptopurine (6-MP) is metabolized by thiopurine methyl transferase (TPMT). TPMT genetic variation results in some individuals having reduced or absent TPMT enzyme activity. If these individuals take a full thiopurine dose, life-threatening adverse events can occur. Testing identifies patients with reduced or absent TPMT activity and is recommended before initiation of therapy. The TPMT∗8 allele, defined by c.644G>A (p.Arg215His), is common among individuals of African ancestry (approximately 2.3% minor allele frequency) but is not included in genotyping recommendations due to its uncertain function. Here, a clinical TPMT enzyme activity assay was used to assess TPMT activity in red blood cells from 982 patients, including those with ∗1/∗8 (n = 22), ∗3A/∗8 (n = 1), and ∗3C/∗8 (n = 1) TPMT diplotypes. The average production of 6-methylmercaptopurine (primary TPMT product measured clinically) was 3.08 ± 0.16 nmol/mL per hour for ∗1/∗8 individuals, compared with 3.77 ± 0.03 nmol/mL per hour for normal metabolizers (P = 0.0001) and 2.39 ± 0.06 nmol 6-methylmercaptopurine/mL per hour for intermediate metabolizers (P < 0.0001). Individuals with a TPMT∗1/∗8 diplotype displayed reduced 6-MP metabolism between that of normal metabolizers and intermediate metabolizers, suggesting that TPMT∗8 is a reduced function allele.
期刊介绍:
The Journal of Molecular Diagnostics, the official publication of the Association for Molecular Pathology (AMP), co-owned by the American Society for Investigative Pathology (ASIP), seeks to publish high quality original papers on scientific advances in the translation and validation of molecular discoveries in medicine into the clinical diagnostic setting, and the description and application of technological advances in the field of molecular diagnostic medicine. The editors welcome for review articles that contain: novel discoveries or clinicopathologic correlations including studies in oncology, infectious diseases, inherited diseases, predisposition to disease, clinical informatics, or the description of polymorphisms linked to disease states or normal variations; the application of diagnostic methodologies in clinical trials; or the development of new or improved molecular methods which may be applied to diagnosis or monitoring of disease or disease predisposition.