Yue-Xia Liu, Qing-Hua Liu, Quan-Hui Hu, Jia-Yao Shi, Gui-Lian Liu, Han Liu, Sheng-Chun Shu
{"title":"Ultrasound-Based Deep Learning Radiomics Nomogram for Tumor and Axillary Lymph Node Status Prediction After Neoadjuvant Chemotherapy.","authors":"Yue-Xia Liu, Qing-Hua Liu, Quan-Hui Hu, Jia-Yao Shi, Gui-Lian Liu, Han Liu, Sheng-Chun Shu","doi":"10.1016/j.acra.2024.07.036","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>This study aims to explore the feasibility of the deep learning radiomics nomogram (DLRN) for predicting tumor status and axillary lymph node metastasis (ALNM) after neoadjuvant chemotherapy (NAC) in patients with breast cancer. Additionally, we employ a Cox regression model for survival analysis to validate the effectiveness of the fusion algorithm.</p><p><strong>Materials and methods: </strong>A total of 243 patients who underwent NAC were retrospectively included between October 2014 and July 2022. The DLRN integrated clinical characteristics as well as radiomics and deep transfer learning features extracted from ultrasound (US) images. The diagnostic performance of DLRN was evaluated by constructing ROC curves, and the clinical usefulness of models was assessed using decision curve analysis (DCA). A survival model was developed to validate the effectiveness of the fusion algorithm.</p><p><strong>Results: </strong>In the training cohort, the DLRN yielded area under the receiver operating characteristic curve values of 0.984 and 0.985 for the tumor and LNM, while 0.892 and 0.870, respectively, in the test cohort. The consistency indices (C-index) of the nomogram were 0.761 and 0.731, respectively, in the training and test cohorts. The Kaplan-Meier survival curves showed that patients in the high-risk group had significantly poorer overall survival than patients in the low-risk group (P < 0.05).</p><p><strong>Conclusion: </strong>The US-based DLRN model could hold promise as clinical guidance for predicting the status of tumors and LNM after NAC in patients with breast cancer. This fusion model can also predict the prognosis of patients, which could help clinicians make better clinical decisions.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":"12-23"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2024.07.036","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale and objectives: This study aims to explore the feasibility of the deep learning radiomics nomogram (DLRN) for predicting tumor status and axillary lymph node metastasis (ALNM) after neoadjuvant chemotherapy (NAC) in patients with breast cancer. Additionally, we employ a Cox regression model for survival analysis to validate the effectiveness of the fusion algorithm.
Materials and methods: A total of 243 patients who underwent NAC were retrospectively included between October 2014 and July 2022. The DLRN integrated clinical characteristics as well as radiomics and deep transfer learning features extracted from ultrasound (US) images. The diagnostic performance of DLRN was evaluated by constructing ROC curves, and the clinical usefulness of models was assessed using decision curve analysis (DCA). A survival model was developed to validate the effectiveness of the fusion algorithm.
Results: In the training cohort, the DLRN yielded area under the receiver operating characteristic curve values of 0.984 and 0.985 for the tumor and LNM, while 0.892 and 0.870, respectively, in the test cohort. The consistency indices (C-index) of the nomogram were 0.761 and 0.731, respectively, in the training and test cohorts. The Kaplan-Meier survival curves showed that patients in the high-risk group had significantly poorer overall survival than patients in the low-risk group (P < 0.05).
Conclusion: The US-based DLRN model could hold promise as clinical guidance for predicting the status of tumors and LNM after NAC in patients with breast cancer. This fusion model can also predict the prognosis of patients, which could help clinicians make better clinical decisions.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.